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New Integrable Hamiltonians with Transcendental invariants
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This paper presents three two-dimensional integrable Hamiltonians, whose second invari-
ant lz is rational or transcendental in momenta. A third invariant I3 (canonically conjugate
to I2) is also found for them, and the motion of the particle explicitly solved. The original
Painleve test does not work very well for these models; however, expansions with four reso-
nances are found in each case.

PACS numbers: 03.20.+i, 02.30.+g

Recently there has been much effort given for
finding integrable Hamiltonian models. To find
such models one has to solve the partial differential
equation resulting from the requirement that the
Poisson bracket between the Hamiltonian H and the
second invariant I2 vanishes. However, there is no
general method to solve the partial differential
equation and therefore one must make a simplify-
ing Ansatz for Iz and/or H. So far it has always
been assumed that the second invariant is polynomi-
al in momenta. Some results for two-dimensional
systems have been given recently. ' s (The max-
imum order for which an explicit invariant has been
found is p for some Toda6 and Holt potentials. )

In this Letter I present three two-dimensional
Hamiltonian models, whose second invariant is ei-
ther a rational, an elementary transcendental, or a
higher transcendental function in momenta. These
models were found with the Ansatz that the second
invariant depends only on two independent vari-
ables. We will also construct a third invariant I3,
canonically conjugate to Iz (i.e. , [Iz,Is]p=1). For
the first two examples we will be able to write down
the motion as an explicit function of time. Finally
we briefly look at how these models behave with
respect to the Painleve integrability test.

Model A.—The Hamiltonian is given by

This describes the motion of a charged particle of
unit mass in a fictitious electromagnetic field,
whose vector potential is A = (O,x/y) and scalar po-
tential g= —,xz/yz. There is a singularity at y =0.
The equations of motion are

x=y 'y+y x, y = —y x —y

The Hamiltonian (1) has the second invariant

I2 (xpy 3px +3 )/py

which is rational in momenta. A third invariant can
also be constructed for this model; I have found

I)~ ——p„+ ln (py/y) .

Of course many other pairs of invariants can be
constructed from these. For example the loga-
rithmic singularity in (4) can be eliminated by con-
sidering expI3". One could also try to find some
function of 0, I2, and I3" which would provide us a
nontrivial second invariant polynomial in momenta.
(In Ref. 7 it was conjectured that polynomial invari-
ants can be constructed from rational and exponen-
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FIG. 1. Some trajectories for model A. I2" and E" are
kept constant and I3" varied. All trajectories fall eventu-
ally to the y = 0 singularity.
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FIG. 2. Some trajectories for model B. I2 and E are
kept constant and I3 varied. See text for behavior of
t +~.

tial invariants. ) However, this is not possible. First observe that 0", I2, and I3 are relatively prime as
polynomials in p„, and therefore, if the new invariant is to be a polynomial in p it must be polynomial in
H", I2", and I3". This eliminates I3" dependence, as it is transcendental, and it is clear that no nontrivial
polynomial of H, I2 is a polynomial in both p„and p~. Since this is a two-dimensional system we cannot
have three mutually commuting invariants. In fact we have [I2",I3" ]p= 1, i.e. , I2" and 13" are a canonically
conjugate pair.

Using the above results we can solve for the motion of the particle:

x(t) = I A + (t —r)ln(t —r) + (t 7)I,", —

y(t) = + (2I2" (t —7)+ (t —7) [2E"—1 —(ln(t —r)+I3" —1) ]]'

~here EA, I2", and I3" now stand for the constant values of these invariants. Some trajectories are given in
Fig. 1. For I2" & 0 the particle emerges from the y =0 singularity parallel to the y axis. The trajectory has a
cusp singularity whenever E"= [3—I2" exp(1 + I3) ]/2.

Model B.—This is defined by the Hamiltonian

The second and third invariants for H are transcendental:

I2a =p~ exp(p„), I3 = —y exp( —p„) + —, (2m )'t
p~ exp(p„)erf(&2p„).

Again [I2,I3 ] = 1 and it is clear that there is no invariant algebraic in momenta, other than H itself. The
equations of motion are

x=2(2xy —y) (4y —1) +1, y'=4y(x —2yy) (4y —1) 2+2y,

and the explicit solution with the invariants as constant parameters is

x(t) = —E —2IpI3 (t —~)+ —, (t —r)'+ —,
' (I, )'(exp[ —2(t —r) ]+(t —~)(2m)' erf[J2(t —r)]],

y(t) =exp[(t —r)']( —I3 +I2 x
4

(2m)' 'erf[J2(t —r)]].
Some orbits are given in Fig. 2. There is again the possibility of a cusp singularity for certain parameter
values. The behavior at t + ~ is also interesting. While x -t /2 at both limits we find that

y —exp(t2) [ —I3a + —,(2m)'t'12a] as t + ~. Thus the parameter values related by I3 = + —, (27r)'t2I&

are bifurcation points in the respective limits. Both Figs. 1 and 2 also suggest an enveloping curve to the
displayed family of trajectories,
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Model C.—The Hamiltonian is now

(10)

g I I

p~ W ( , E,p„—)+ 2 W' ( —,E,p„)
I2 = —,y[p~W+( —,E,p„)+2W+ ( , E,p„—)]2, I3 =

p„W, ( , E,p„-)+2W, ( ,'E,p„-)

Here the prime denotes differentiation with respect to p„and E stands for the Hamiltonain 8 . Again
[I2c,I3c ] = 1. Since the parabolic cylinder functions are entire analytic functions for all values of the parame-
ter we see that I2 is a globally defined, single-valued function, as required.

The Newton's equations are

which is of the usual 'kinetic energy + potential" type. For this Hamiltonian the second (and third) invari-
ants can only be expressed in terms of the parabolic cylinder functions. 9 Let W+ (a,x) and
W (a,x) = W+(a, —x) be the two independent standard solutions of the equation y" (x)
+(—,x2 —a)y(x) =0. The Wronskian of W+ and W is equal to unity. In terms of W+ and W the
second and third invariants are iven b

x = —1/y, y'=x/y', (12)

but now we have not been able to construct x and y as explicit functions of time; instead we present here the
trajectory with p„as a parameter:

x(p„)=-I,'(p„/4+1)[W (-,'Ep„)-I3'W+ ( ,'Ep„-)]'+ ,'E[W-( ,'Ep„)-I,'W-+( ,'Ep„-)]',
(13)

y(p. ) =-,'I2 [W —( Epx) I3 W+ (2Epx)] .

The Painleve analysis' has been used successfully to predict integrability. For most of the Hamiltoni-
an models having the "weak Painleve" property one has been able to find a second invariant, polynomial in
momenta. Now that we have integrable models with rational or transcendental invariants it would be in-
teresting to see what could have been predicted from a Painleve analysis. It turns out that none of the
models presented here have solutions with a divergent leading behavior, which is usually assumed in a Pain-
leve analysis.

For model A we start with the Ansatz x =at" +. . ., y =bt'+. . . for the leading behavior and substitute
into (2). We find first

ap(p, —1)t" =vt '+(a/b )t" ", bv(v —1)t" = —(a/b)pt" " ' —a b t" (14)

Here the leading terms can be made to cancel if we choose (1) p, = v =1, a = —b, b arbitrary or (2) p, =0,
v = —,, a = —1/2b, b arbitrary. Next we would have to study the resonances, but we stop here, because nei
ther of these gives the beginning of the correct expansion. With hindsight from (5) we note that the non-
leading t lnt term can also produce a t ' or t i2 term in the left-hand side of (14). The correct expansion
starts with t4, = 0, v = —,, a = +1/2b, b arbitrary. Presumably we would have found this problem had we stu-
died the resonances. The point is that when the leading behavior is not divergent nonleading terms can con-
tribute through the derivative terms.

The equations (8) for model B are somewhat more difficult to study, but they do not seem to follow any
singular behavior either.

Equations (12) for model C are best studied if x is first solved in terms of y and y". The equation for y is
then

y'y'"+ 4y"'y'y'+ 2(y"")'y'+ 2y"y'y +1=o.
The leading behavior for y can now be y = at" with p, = 0, —, , or 1, or y = (2i) 'i t (lnt) 'i . The first is a regu-
lar expansion having resonances at 0, 1, 2, and 3:

y(t) =A +Bt+Ct +Dt —(A BD+—A C + , AB C+ —„)A t +. . . . —

For the second case we write y (t) = (t —~) [A +8 (t —r)v] and then there are resonances at p = —1, 0,
—,, and 1, which is typical of what one obtains in a Painleve analysis. The expansion starts now according to

y(t) = (t-7)' '{82+84(t —r)"+B,(t-r) —[ ,'8,'8 —„'8 ]t"+.-. .]. —
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The third case has only double poles; we have not
studied further the fourth one.

None of these models has an expansion with a
divergent leading term and, as we have seen,
branch cuts and logarithims are found. Thus these
models do not pass the conventional Painleve test,
although models 8 and C come very close.
Nevertheless all models have expansions where the
necessary four parameters can enter. If one wants
to make a new conjecture on the basis of these
results one could say that the critical property is the
existence of enough resonances (four in this case) .

The Painleve test has often been used successful-
ly to find candidates for integrable models, but for
the final proof of integrability one usually has to
construct the second invariant explicitly. For obvi-
ous reasons the necessary search for invariants has
usually been made among polynomials of p~ and p~.
The above results suggest, however, that an exten-
sion to transcendental invariants would be produc-
tive. The systematic methods for doing this are still
to be formed.
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