
VOLUME 52, NUMBER 12 PHYSICAL REVIEW LETTERS 19 MARCH 1984

Adaptation and Self-Repair in Parallel Computing Structures

B. A. Huberman
Xerox Palo Alto Research Center, Palo Alto, California 94304

and

T. Hogg
Physics Department, Stanford University, Stanford, California 94305

(Received 15 December 1983)

This paper reports a study of the dynamics of highly concurrent computing structures capa-
ble of learning and storing several input patterns. The existence of attractors in their dynam-
ical behavior leads to a novel self-repairing mechanism. Quantitative experiments on adap-
tive processor arrays demonstrate the existence of attractive fixed points in their adaptation
and recognition properties, as well as the immunity of these collective computation machines
to random errors.

PACS numbers: 89.90.+h, 06.50.Mk, 89.70.+c

Complex systems, such as biological organisms
and computing structures, lie between the realms of
statistical mechanics and the physics of a few de-
grees of freedom. As such, they lack both the
universality of the laws of large numbers and the
simplicity implied by the geometry of low-
dimensional phase spaces. Moreover, they are ca-
pable of exhibiting behavior which in many cases is
fault tolerant and characterized by adaptation,
learning, and recognition. All these properties un-
derlie problems of current interest in very large-
scale integration (VSLI), ' neurobiology, 2 and cog-
nitive processes such as vision and speech" under-
standing.

Parallel computing structures, which are common
in nature, provide an ideal experimental tool when
implemented in actual machines. This allows for a
detailed analysis of concurrent processes which are
not often experimentally accessible in the real
world. '

This paper reports results of a quantitative study
of dynamical behavior in parallel computers which
can be implemented with current technology. Their
properties include learning, pattern recognition, and
associative (content addressable) memory. We
present a novel self-repairing mechanism, based on
the existence of stable attractors, which is a concep-
tual departure from the usual multiplexing
schemes. We also introduce a tumbling index, A,
governing the rate of discrete error recovery in

these arrays. Finally, we discuss the applicability of
our results to a variety of systems.

Consider a synchronous, rectangular array of
identical processors each of which is locally con-
nected to its neighbors. In addition to data values
received through these connections, each processor

il2)

( M

la) ibl tcj

FIG. 1. Computation steps and unit cell of the array.
(a) First the two input values are received from above.
(b) The new output is then computed and sent to the left
and right. (c) The internal memory value is modified
and the new output sent down. (d) Unit cell of the array.

1048 O 1984 The American Physical Society



VOLUME 52, NUMBER 12 PHYSICAL REVIEW LETTERS 19 MARcH 1984

has an adjustable internal state, or memory, which
allows it to adapt to its local environment. Overall
input and output takes place at the edges of the ar-

ray, with the upper edge of the array for input and
the lower edge for output.

Our particular implementation for an array with

m rows and n columns provides each element with

two integer inputs and a single integer output. All

of the data values are constrained to lie in a specific
interval, namely [S;„,S,„]. The internal state of

each element is represented by a single small in-
teger. The local computation rules enhance differ-
ences in the data values, with a saturation process
which keeps the values within the specified interval.

The sequence of local computations is illustrated
in Figs. 1(a)—1(c). Specifically, let M„(k) be the
memory value contained in the processor located in
the ith row and j th column after the kth time step.
Let I;,"l(k) and I,,(2l(k) be the input values to this
element and 0,, (k) be the output. The new output
of each element is then computed as

0;,(k+1) =max(S;„, min(S, „,M,, (k) [I,,"l(k) —lj l(k)]))
which, except for the saturation, just multiplies the
difference in the inputs by the value stored in the
memory. The connections between elements are
defined by the relations

IJ('l(k) = 0
~ J,(k),

t,,'"(k)=0, „„(k)
(2a)

(2b)

O„(k) =S, (k),

0 I(k) =Ri(k),

(3a)

(3b)

0; (k) = 0;„,(k) =0 (3c)

for the top, bottom, and side edges, respectively.
Adaptive behavior is obtained when the memory

values M;, are modified by comparing the output,
which was previously computed according to Eq.

for 1~i ~m and 1~j ~n. Thus each element is
connected to its neighbors along diagonals and each
output is used as an input to two elements (except
at the edges of the array). The unit cell of such a
lattice is shown in Fig. 1(d). These connections
cause the data to flow through the array at a rate of
one row per time step. The external input signal to
the array at step k is denoted by S (k), and R (k) is
the resulting output vector. The boundaries of the
array are specified by

(1) by the ij element, to the outputs of its neigh-
bors to the left and right, as shown in Figs. 1(b)
and 1(c). If the ij output is greater (smaller) than
the other two, the value of M; is increased (de-
creased) by one, subject to the restriction that its
magnitude remain in a fixed range [M;„,M,„].
Typically, we used M;„=1 and M,„=4. This
procedure further enhances differences in the in-
puts to each row of cells. By thus separating the
adaptive process from the flow of data, the adapted
array can be studied by sending inputs through it
without changing the memory values„

To analyze the dynamics of such a complex sys-
tem, we used the stroboscopic technique of
d'Humieres and Huberman, which i.s illustrated in
Fig. 2 for a square connectivity. Other topologies,
such as the one we study here with diagonal con-
nections, can be equally treated with this technique.
By presenting a periodic string of inputs and com-
puting the distance between corresponding sampled
outputs, we were able to study dynamical changes
in the array while it adapted to the input sequence.
Notice that this technique does not necessarily re-
quire direct access to the internal state of the array.
Specifically, for periodic signals with period P we
have S(k+P) =S(k) for all k. Since a particular

s ( i)
-,s(2)

.-' S(3)
S(F )

R (&)
.--- ---., Fl{2}

R(3)

/
/

/

R{p)

FIG. 2. Schematic description of the stroboscopic sampling of the array dynamics. The square boxes denote the ele-
ments of the array with memory M which can differ in each element.

1049



VOLUME 52, NUMBER 12 PHYSICAL REVIEW LETTERS 19 MARCH 1984

signal requires m time steps to reach the output, the
signal vector entering the array at step k, S (k), will

produce a result at step m + k, R (m + k). The out-
put distance for each period is defined by

d(t) = maxlkl[ )R (m + 0 +P) —R (m + k)
~ ~, (4)

where k ranges over the set (tP + 1,tP + 2,
..., (t+ 1)P), i.e., the times at which the t th period
of the input signal enters the array.

Figure 3 shows the results of an experiment per-
formed on a representative array consisting of 64
cells arranged in a square lattice which was subject-
ed to a periodic, pipelined input consisting of four
patterns chosen at random, i.e., I' =4. Pipelining,
besides being computationally efficient (i.e., high
concurrency), prevents the array from operating on
zeros between inputs. The saturation values were
chosen to be S,„=—S;„=15.As shown in Fig.
3(a) up to the location of the arrow, the system
reaches a fixed point in a short time (of order five
periods). In the adapted regime the stroboscopical-
ly sampled state of the array consists of a complicat-
ed configuration of memory values which are
shown in Fig. 2(b).

These attractive fixed points produce recognition
processes which, unlike those in digital filters, are
nonlinear because of saturation in the local compu-
tation rules. By fixing the values of the memory

b) Array before upset:

2 22 "
d

3"2. 2.

c) Upset Array:

2. 22. . +

3"2. 2.

Q
Q2

FIG. 3. (a) Distance d(t) as a function of time in

units of the input period for a square array with 64 cells.
The arrow denotes the time at which errors were intro-
duced. (b) State of the array before upset. The dots
denote the value 1 and the asterisks 4. (c) State of the
array immediately after five soft upsets.

states and then sending inputs through the array in
any order, we were able to determine which learned
inputs produced different outputs. These processes
map many different input patterns into each output
and in general the output of the array is insensitive
to small variations in the inputs. Thus, small dis-
tortions (as measured by their distance) of the
learned inputs still produce the same outputs. Note
that by using each output as an address in a data
base, the array can be made into a flexible content-
addressable memory.

The existence of stable attractors for these com-
puting structures provides a novel mechanism of
self-repair during the adaption process. The
dynamics of the array causes small fluctuations in
either data or memory values to relax towards the
attractive fixed points. This genera1 method of
self-repair is very different from the standard tech-
niques used for reliable computing. The latter are
based on multiplexing schemes with majority rules
and require an enormous amount of hardware per
operation. Our technique uses instead the stable
collective modes of the computer. Hence the
dynamics of this parallel machine is analogous to
the behavior of a dissipative dynamical system with
many degrees of freedom.

To study this effect, we introduced errors during
the adaptive process either while the array was
changing or after it converged to a fixed point.
Such errors were introduced by randomly modifying
some of the memory values and then allowing the
array to proceed as before (soft upsets), or by per-
manently freezing the state of some of the elements
as well as their outputs (hard upsets). to Figure 3 (c)
shows the state of the array immediately after five
soft errors were introduced, with the circles indicat-
ing which elements were changed. The resulting ra-
pid recovery is seen in Fig. 3(a) to the right of the
arrow. The state of the array after it recovered was
the same as shown in Fig. 3(b). Typically, soft
upsets could be introduced in 20'/0 of the memory
elements of the array without causing it to relax to
another attractor. "

This mechanism of self-repair suggests the ex-
istence of a tumbling index, A, which determined
the average rate at which errors at the output
change discretely in time. Unlike the familiar
Lyapunov exponent, A characterizes a walk on an
integer lattice. Such an index can be defined as an
average of the rates of error decay over all array
configurations which produce an output differing
from the initial one, weighted by the probabilities
with which the configurations occur. Further nu-
merical experiments will be needed to determine

1050



VOLUME 52, NUMBER 12 PHYSICAL REVIEW LETTERS 19 MARCH 1984

the optimal algorithm for measuring A.
In conclusion, adaptive computing networks can

be designed which display self-organizing, fault-
tolerant behavior with few wires, local computation,
and a lattice structure. Such architectures, based on
a rectangular lattice of identical processors, can be
readily implemented on single VLSI chips. They
also provide a fertile ground for studies of dynamics
of many degrees of freedom. Furthermore, since
these machines can be used to implement standard
logic gates they are capable of universal computa-
tion. These computing structures can also be used
for perceptual tasks such as vision and speech learn-
ing and recognition. Last but not least, given the
traditional extrapolation of the behavior of automa-
ta to the functioning of the brain, ' our mechanism
of self-repair may provide a useful paradigm for
studying its reliability.

We have benefitted from stimulating discussions
with M. Gell-Mann, A. Perliss, and R. Spinrad.
One of us (T.H. ) would like to thank the Xerox
Palo Alto Research Center for a predoctoral fellow-
ship.

C. A. Mead and L. A. Conway, Introduction to VLSI
Systems (Addison-Wesley, Reading, Mass. , 1980).

2J. C. Eccles, The Understanding of the Brain

(McGraw-Hill, New York, 1973).
3M. Brady, Comput. Surv. 14, 3 (1982). See also D.

H. Ballard, G. E. Hinton, and T. J. Sejnowski, Nature
(London) 306, 21 (1983).

4J. Banatre, P. Frison, and P. Wuinton, Acta. Inf. 18,
431 (1983).

5See, for instance, Essays on Cellular Automata, edited
by A. W. Burks (Univ. Of Illinois Press, Champaign, Ill. ,
1976); S. Wolfram, Rev. Mod. Phys. 55, 601 (1983); M.
Y. Choi and B. A. Huberman, Phys. Rev. A 28, 1204
(1983).

6K. Brueckner and M. Gell-Mann (unpublished); J.
von Neumann, in Automata Studies, edited by C. E. Shan-
non and J. McCarthy, Annals of Mathematics Studies
Vol. 34 (Princeton Univ. Press, Princeton, N. J., 1956),
pp. 43 ff. See also S. Winograd and J. Cowan, Reliable
Computation in the Presence of Noise (MIT Press, Cam-
bridge, Mass. , 1963), and more recently, R. L.
Dobrushin and S. I. Ortyukov, Prob. Inf. Transm.
(USSR) 13, 203 (1977).

We should mention that many other local rules pro-
duce the general behavior that we report below.

8D. d'Humieres and B. A. Huberman, J. Stat. Phys.
34, 361 (1984).

sR. W. Hamming, Digital Filters (Prentice-Hall, Engle-
wood Cliffs, N. J., 1977).

'OError mechanisms in actual microelectronic circuits
are discussed by J. McNuthy, Phys. Today 36, No. 1, 9
(1983).

Hard errors also allow for relaxation to the attractor
provided they are few in number.

' See, for instance, J. von Neumann, The Computer and
the Brain (Yale Univ. Press, New Haven, Conn. , 1958).

1051


