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Fractal Dimension of Dielectric Breakdown
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It is shown that the simplest nontrivial stochastic model for dielectric breakdown naturally
leads to fractal structures for the discharge pattern. Planar discharges are studied in detail
and the results are compared with properly designed experiments.
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Dielectric breakdown of gaseous, liquid, and solid
insulators frequently occurs by means of narrow
discharge channels that exhibit a strong tendency to
branching into complicated stochastic patterns. ' '

Examples are lightnings, surface discharges
(Lichtenberg figures), 3 and treeing in polymers. 4

The global structure of branched discharges often
shows a close structural similarity within a large
class of discharge types but at the moment even a
qualitative classification of these structures is miss-
ing.

In this Letter we present some evidence for frac-
tal properties of branched discharges by analyzing
adequately designed experiments and by the study
of a new theoretical model. In particular we show
that the simplest nontrivial stochastic model of
dielectric breakdown naturally leads to fractal struc-
tures.

In order to facilitate the analysis of an experi-
mental discharge pattern the optimal situation is
that of a two-dimensional radial discharge like the
one shown in Fig. 1. This example refers to a
leader surface discharge (Lichtenberg figure) in
compressed SF6 gas whose properties have been
studied in detail previously by Niemeyer and Pin-
nekamp. 5 The parameters were controlled in such a
way that the experiment produces, to a good ap-
proximation, an equipotential channel system grow-
ing in a plane with a radial electrode from a central
point.

If Fig. 1 corresponds to a fractal structure the re-
lation between the total length of all branches (or
total number of points in the sense of Ref. 6) inside
a circle of radius r and the radius r itself should be a
power law with noninteger exponent D:

N(r) —rD.

The thickness of the branches is considered as zero
dimensional; it does not grow with the size of the
object. Note that the apparent thickness in the pho-
to of Fig. 1 is just an optic effect due to the number
of carriers that have passed through a given branch.

The number of branches n (r) at a given distance r
from the center is then given by

n (r) —dX(r)/dr —r (2)

FIG. 1. Time-integrated photograph of a surface
leader discharge (Lichtenberg figure) on' a 2-mm glass
plate in 0.3-MPa SF6. Applied voltage pulse: 30 kV&&1

p, s (Ref. 5). This experiment corresponds to an equipo-
tential channel system growing in a plane with radial elec-
trode.

Therefore a careful counting7 of the number of
branches for different values of r provides informa-
tion about the exponent D. The analysis of the
photos suggests a power-law behavior with D —1.7,
but the finite size and resolution do not allow an ac-
curate determination of this exponent.

In order to gain insight into which features of the
phenomenon of dielectric breakdown are the
relevant ones with respect to its fractal properties
we introduce an appropriate stochastic model and
study it by computer simulations. We consider a
two-dimensional square lattice (Fig. 2) in which a
central point represents one of the electrodes while
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FIG. 2. Illustration of the stochastic model we intro-
duce to simulate dielectric breakdown on a lattice. The
central point represents one of the electrodes while the
other electrode is modeled as a circle at large enough dis-
tance. The discharge pattern is indicated by the black
dots connected with thick lines and it is considered equi-
potential (P = 0). The dashed bonds indicate all the pos-
sible growth processes. The probability for each of these
processes is proportional to the local electric field (see
text).

the other electrode is modeled as a circle at large
enough distance. The rules we assume for the
growth of the discharge pattern are the following:

(a) The pattern grows stepwise. Figure 2 gives an
example of a configuration after a few steps: The
discharge pattern is indicated by the black dots con-
nected with thick lines. The electric potential $ is
defined for all points of the lattice by the discrete
Laplace equation with the boundary conditions

/ =0 for each point of the discharge pattern and

$ = 1 outside the external circle.
(b) At each step one bond is added to the pat-

tern, linking a point of the pattern with a new point.
The possible candidates are indicated in Fig. 2 by
the dashed bonds that link a black point to a white
one.

(c) To each of these dashed bonds a probability p
is associated that is a function of the potential
difference (local electric fields) between the black
(i,k; Q;k = 0) and white (i',k') dots connnected by
this bond. The indices i,k and i', k' represent the
discrete lattice coordinates. We write

(y, „,)"
p(i, k i', k') = (3)

g(y, , „,)"
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where a power-law dependence with exponent q is
assumed to describe the relation between local field
and probability. The sum in the denominator refers
to all the possible growth processes (dashed lines in

Fig. 2). Given this probability distribution a new
bond (and point) is chosen randomly and added to
the discharge pattern. With this new discharge pat-
tern one starts again. These rules properly define
also the starting of the process from the central
point. Further it follows that no crossing is possible
and that the pattern is simply connected.

The essence of this stochastic model is therefore
that the growth probability depends on the local
field (potential) determined by the equipotential
discharge pattern. The most laborious part of this
program is the solution, at each time step, of the
Laplace equation

V2$ =0. (4)
The discrete form of Eq. (4) on the two-
dimensional lattice can be written as

~i k 4 (%i+1,k+ 4i —t,k+ 4i k+1+ %i k —1)

Given the appropriate boundary conditions the po-
tential is obtained by iterating Eq. (5). Typically
good convergence is obtained with a number of
iterations between 5 and 50. This method correctly
reproduces the global influence of a given discharge
pattern on the growth probability for each bond. So
for example, the tip of a line like the one on the
right side of Fig. 2 will have a large growth proba-
bility while the points inside a cage (e.g. , left side of
Fig. 2) will have much smaller probability. These
are the well known "tip effect" and "Faraday
screening" that result from the solution of the field
equation.

Recently Sawada et al. ' have tried to simulate
dielectric breakdown by simply assigning a priori a
larger probability for the growth of tips with respect
to side branching. This simplification completely
neglects the nonlocal nature of the electric field.
For example a tip inside a Faraday cage has in their
approach the same growth probability as a free tip.
The results obtained with this approximation are
qualitatively different from experimental discharges
and their global dimensionality remains the Eu-
clidean one (D = 2). Badaloni and Gallimberti" in-
stead do not approach the problem of the dimen-
sionality of the structure but provide an interesting
connection between a microscopic picture of the
avalanche formation and the bifurcation probability
and geometry at a tip.

We start the discussion of the computer simula-
tions with the case q = 1 (growth probability propor-
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tional to the local field) that is the most realistic
case for the present experiment. 5 We obtain highly
branched structures like the one shown in Fig. 3.
In order to investigate the dimensionality of these
discharge structures we have generated several of
them and we have plotted the logarithm of the total
number of points within a certain radius as a func-
tion of the logarithm of this radius. The average
over five large samples of about 5000 points each
gives rise to a Hausdorff dimension D =
1.75+0.02. The error bar is due to the statistical
fluctuations of the slope but the possibility of a
larger systematic error due to the finite size of the
systems considered cannot be excluded. We can
see that the computed value is in good agreement
with the value D = 1.7 suggested by the analysis of
the experimental discharges. This comparison any-
how should be considered with caution because in
the computer simulations we have two-dimensional
field equations while in the experiment only the
growth is two-dimensional while the field lines ex-
tend three dimensionally. This is a point that we
intend to consider in more detail in future work.

We study further the effect of values of 7i dif-
ferent from 1. This is of interest because in other
systems than gases (solids, liquids, and polymers)
the microscopic relation between growth probability
and local field may be more appropriately described
by a nonlinear function. '

The case q = 0 corresponds to growth probabili-
ties independent on the local field. This is a sort of
Eden (cancer). model'2 with the difference that

some of the white points in our case (Fig. 2) have a
higher probability because they can be reached from
more than one black point. The growth is in this
case homogeneous with D =2. We have further
considered the cases q=0.5 and q=2. The corre-
sponding Hausdorff dimensions are reported in
Table I and they differ from the case g= l. This
shows that the Hausdorff dimension depends on the
parameter q and there is no universality in this
respect. For large q the structure tends to be more
"linear, " but a careful study of the limit q ~ is
not possible with the present method. We suggest,
however, that, in contrast with the simple behavior
for q 0, the limit q ~ is likely to be
nonanalytical in the sense that the exchange of lim-
its q ~ and N ~ may give rise to different
behaviors. '"

Another interesting variation we have considered
is the effect of a Debye screening (due to eventual
mobile carriers in the system) or correspondingly a
finite mass in a field theory. This is realized by re-
placing '72 in Eq. (4) by ('72 —k2). Such a change
introduces a length scale (I —k ') into the system
that then loses its self-similarity. The results show
nonhomogeneous patterns for length scales lower
tha I but homogeneous behavior (D = 2) on larger
scales.

With respect to other growth models the general
shape of our patterns for q = l (Fig. 3) and the cor-
responding value of D closely recall the results of
the diffusion-limited aggregation models. '

This similarity actually arises from the close rela-
tions between random walk and potential theory, a
point to which we intend to dedicate a more extend-
ed discussion elsewhere.

In summary we have introduced a new stochastic
model to describe the discharge pattern of dielectric
breakdown. The basic assumption is that the
growth probability depends on the local electric
field. We show that this model naturally leads to
fractal structures that we study in detail in two

TABLE I. Dependence of the Hausdorff dimension D
on the exponent q used in the relation between probabili-

ty and local field [Eq. (3)].

FIG. 3. Example of computer-generated discharge pat-
tern of about 5000 steps. The Hausdorff dimension for
these structures turns out to be D =1.75+0.02.
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dimensions. The results are consistent with the
analysis of properly designed experiments of planar
discharge.
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