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It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with
the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces
the belief that level fluctuation laws are universal.
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The statistical study of spectra of quantum sys-
tems is almost as old as quantum mechanics it-
self. One distinguishes two types of properties:
global ones and local ones. An example of the
former is provided by the density of levels as a
function of excitation energy. In this Letter we
shall discuss local properties, or more precise-
ly, fluctuations (departures of the energy-level
distribution from uniformity). We shall deal
with time-independent systems and energies of
stationary states.

There exists a well established theory to de-
scribe fluctuation properties of quantal spectra,
namely the random matrix theory (RMT) initiated
by Wigner, developed mainly by Dyson and Meh-
ta,! and later extended by several authors.®? Re-
cently,® the predictions of RMT [specifically, the
predictions of the Gaussian orthogonal ensemble
(GOE)] have been compared in great detail with
the whole body of available nuclear data coming
mainly from compound-nucleus vesonances. No
discrepancy between theory and experiment has
been detected. In particular the data have been
shown to exhibit two of the salient phenomena
predicted by the theory—the level vepulsion
(tendency of the levels to avoid clustering) and
especially the spectral rigidity (very small fluc-
tuation around its average of the number of lev-
els found in an interval of given length), which is
a property due to correlations between level spac-

ings. We should also mention that recently a
comparison between data of atomic levels and
GOE has been performed.* Although the signifi-
cance of the comparison is lower than in the nu-
clear case (due to the method used in Ref. 4 as
well as to the relatively small number of availa-
ble data), a good agreement between GOE pre-
dictions and experiment was found.

Once the ability of the theory (GOE) to predict
the fluctuation properties exhibited by data is es-
tablished, one could think that no major question
in this field is still open. It is one purpose of
this Letter to show that this is not the case. In-
deed, as it will be discussed in what follows, the
origin of the success of the theory as well as its
domain of validity remain to be clarified.

In connection with the study of regular and ir-
regular motion some very interesting results
have been obtained in recent years. Strong argu-
ments have been given which indicate that for in-
tegrable systems with more than one degree of
freedom,’ the nearest-neighbor spacing distribu-
tion p(x) of the quantum energy levels should be
Poisson-like [p(x)=exp(- x)] and the spacings
should not be correlated.®'” In contrast, evidence
of level repulsion has been put forward by study-
ing numerically systems having two degrees of
freedom and known to be chaotic® in the classical
case (stadium,® Sinai’s billiard'?). Although this
feature is clearly appealing, it is up to now only
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qualitative [one would need a spectrum with very
many levels to get a precise evaluation of the be-
havior of p(x) at the origin]. On the other hand,
the information carried by p(x~0) is rather lim-
ited. In particular, it does not give any indica-
tion about the correlations between spacings
which are responsible for the degree of regularity
of the spectrum. The purpose of this Letter is to
use some of the systematic tools developed in
RMT to make a detailed comparison of the level
fluctuations of the quantum Sinai’s billiard (SB)
with GOE predictions. The choice of a two-di-
mensional billiard is convenient for our aim for
several reasons: (i) Billiards have the lowest
possible number of degrees of freedom allowing
for chaotic motion; (ii) for billiards, it is possi-
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FIG. 1. Results of energy-level fluctuations for
desymmetrized Sinai’s billiards as specified in the
upper right-hand corner of (a). 740 levels have
been included in the analysis corresponding to the
51st to 268th level for R =0.1, 21st to 241st level for
R =0.2, 16th to 194th level for R =0.3, 11th to 132nd
level for R=0.4. (a) Results for the nearest-neighbor
spacing distribution. (b) Results for the average value
of the A 4(L) statistic of Dyson and Mehta for L =5,
10, and 15. Curves corresponding to the Poisson case
(stretch of uncorrelated levels) and to the random-
matrix—theory predictions (GOE) are drawn for com-
parison. The error bars in (b) (one standard deviation)
correspond to finite-sampling effects as predicted
by GOE.

ble to make a precise separation between global
and local properties [cf. the Weyl formula, Eq.
(1)]; (iii) billiards have a discrete spectrum with
an infinite number of eigenvalues and by comput-
ing a large number of them one can reach a high
statistical significance of the results. Finally,
SB is known to be strongly chaotic (K system) and
there exists an efficient method to compute its
eigenvalues.

We proceed as follows. We determine the eigen--
values E, =k ,2/2m of the Schrodinger equation
(a+%,2)9,=0 for the “desymmetrized” SB [see
upper right-hand corner of Fig. 1(a)] with Dirich-
let boundary conditions by using the Korringa-
Kohn-Rostoker method as described in Ref. 10.
We compute several sets of eigenvalues {E;(R)}
for different values of the parameter R (see cap-
tion of Fig. 1). By using the Weyl-type formula,'
which gives the average number of levels up to
energy E ,

N(E)=(37)(SE -LVE +K), 1)

where S and L are, respectively, the surface and
the perimeter of the billiard and K is a constant
of the order of unity, we can map the spectrum
{E;(R)} onto the spectrum {¢,(R)} through €,(R)
=N(E,(R)). Each spectrum {€,;(R)} has on the
average a constant mean spacing D(R) which will
be taken as the energy unit. The cumulative den-
sity n(€) of levels €; will therefore have a stair-
case shape fluctuating around a straight line of
slope equal to unity. In order to investigate the
fluctuations we study the nearest-neighbor spac-
ing distribution p(x) and the Dyson-Mehta statis-
tic A,. A, is defined, for a fixed interval [x,

x+ L], as the least-squares deviation of the stair-
case function n(€) from the best straight line fit-
ting it:

A (L,x)
=(1/L)Min, , 2 [n(e)-Ae-BRae. (2)

It provides a measure of the degree of rigidity of
the spectrum: For a given L, the smaller A, is,
the stronger is the rigidity, signifying the long-
range correlations between levels. We proceed
as described in Ref. 3: Given a stretch of levels
on the € axis, we compute A4(L), for instance,
for the intervals [a,a+L], [a+L/2,a+3L/2],
la+L,a+2L]), [a+3L/2, a+5L/2],... until the
stretch [a, b] has been covered. If the spectrum
fluctuations are translationally invariant on the

€ axis, then the average value A, of A, will be in-
dependent of the chosen interval [a,b] [ equiva-



VOLUME 52, NUMBER 1

PHYSICAL REVIEW LETTERS

2 JANUARY 1984

lently, the average of A, computed with Eq. (2)
will not depend on the initial value x of the inter-
val]. We have checked numerically that this is
the case for the SB spectra, provided that the
first lowest levels of each spectrum {e,.(R)} are
omitted (see caption of Fig. 1). This procedure
seems appropriate if one observes the spectra
corresponding to different values of R: Indeed,
the smaller the value of R the larger the number
of levels, starting from the ground state, that
can be attained by perturbation theory from the
spectrum {€;(R =0)} (triangular billiard). We
emphasize that the fluctuation properties we are
looking for will appear to be essentially different
from the ones corresponding to the triangular
billiard*? and cannot be attained from it by per-
turbation theory. To increase the statistical sig-
nificance of the results, four spectra{e;(R)} cor-
responding to different values of R will be ana-
lyzed as corresponding to a single stretch of 740
levels (see caption of Fig. 1). Care has been tak-
en that one is dealing with “independent informa-
tion”: The different values of R should not be
chosen too close to one another. Otherwise, two
different spectra corresponding to R and R +0R
would be almost deducible one from the other and
one would just be analyzing redundant informa-
tion,

Let us now discuss the results. In Fig. 1(a) is
shown the nearest-neighbor spacing distribution
p(x) which is compared to the GOE and Poisson
predictions. As can be seen, the SB results fol-
low very closely GOE not only for small spacings
(level repulsion) but over the whole range of
spacings. The variance of p(x) for SB is 0.273
which is close to the GOE value 0.286 + 0.015
(the error bar takes into account the finite sam-
pling effects) and far from the Poisson value 1.0.
We next consider quantities related with the spac-
ing correlations. In Fig. 1(b) are shown the av-
erage values of A, (L) for L=5, 10, and 15 for
SB; they are close to the corresponding GOE
values. We have also computed the correlation
factor between two adjacent spacings. For SB
we obtain — 0.30, to be compared to — 0.27 + 0.04
(GOE) and 0.0 (Poisson). We can summarize the
numerical results as follows: All fluctuation
properties of SB investigated so far are fully
consistent with GOE predictions.

Is this a surprising result? With a few incon-
clusive exceptions (see a discussion on small
metallic particles, for instance in Ref. 2), the
basic hypotheses leading to RMT have always
been put forward by invoking the complexity of

the system. In other words, it has been taken

as essential that one is dealing with a many-par-
ticle system (system with many degrees of free-
dom). Our results indicate that this is by no
means a necessary condition. Indeed, the quan-
tum chaotic system with two degrees of freedom
studied here (a one-particle system in two dimen-
sions) shows also GOE fluctuations. The present
work should have further developments [for in-
stance, when time-reversal invariance does not
hold, the adequate model in RMT is the Gaussian
unitary ensemble (GUE) and one should look for
“simple” chaotic systems having GUE fluctua-
tions]. It is an attempt to put in close contact two
areas—random matrix physics and the study of
chaotic motion—that have remained disconnected
so far. It indicates that the methods developed

in RMT to study fluctuations provide the adequate
tools to characterize chaotic spectra and that,
conversely, the generality of GOE fluctuations is
to be found in properties of chaotic systems. In
summary, the question at issue is to prove or dis-
prove the following conjecture: Spectra of time-
reversal-invariant systems whose classical an-
alogs are K systems show the same fluctuation
properties as predicted by GOE (alternative
stronger conjectures that cannot be excluded
would apply to less chaotic systems, provided
that they are ergodic). If the conjecture happens
to be true, it will then have been established the

universalily of the laws of level fluctuations in

quantal spectra already found in nuclei and to a
lesser extent in atoms. Then, they should also
be found in other quantal systems, such as mole-
cules, hadrons, etc.
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associé au Centre National de la Recherche Sci-
entifique.
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