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A centered rectangular lattice-gas model for the chemisorption of H on Fe(110) is
studied by transfer-matrix scaling. The results indicate a new type of phase transition
to a uniaxial modulated ¢ (3 x 1)”” phase with anisotropic critical behavior.

PACS numbers: 64.60.Cn, 05.70.Fh, 68.45.-v

Monolayers of atoms adsorbed on surfaces of-
ten undergo a continuous transition to a phase
with broken substrate symmetry. In several cas-
es the nature of such a transition can be predict-
ed via a mapping of an effective Hamiltonian de-
rived from Landau symmetry rules to well-known
Ising, Potts, or vector models.' Thus a transi-
tion to a uniaxial commensurate p X 1 structure
is predicted to be Ising-like for p =2.2 For p >2
the transition is expected to be in the universal-
ity class of vector Potts (clock) models,®* ® sine-
Gordon models,* 7 or their quantum versions.%®
In these cases the pX 1 structure may melt to an
incommensurate floating phase with zero order
parameter and algebraic decay of correlations
which has a Kosterlitz-Thouless transition to the
disordered high-temperature phase.°

Recently it was suggested® that for p =3, fluctu-
ations characterized by light or heavy domain
walls are important for the nature of the phase
transition. Thus the phase diagram of a (3x 1)
structure, which for instance is observed for hy-
drogen adsorbed on a Fe(110) surface,'* should
have a line where “chirality” defined by the free-
energy difference of light and heavy walls is zero.
On this line the transition is predicted to be
three-state Potts-like. Away from this point chi-
rality is relevant® ® and may change the transi-
tion. However, the nature of the transition and
the topology of the phase diagram are still con-
troversial.®”?

All of the models mentioned above are related
to the real monolayer transition via universality
arguments only. However, in particular for
chemisorbed atoms, lattice-gas models are ex-
pected to be a more microscopic and realistic
description.’? In fact, for H/Fe(110) a centered
rectangular lattice-gas model with short-range
pair and triple interactions gave a satisfactory
description of the phase diagram and the struc-
ture factor'® which experimentally were obtained
by low-energy electron diffraction (LEED).*

In this Letter the nature of the (2x 1) and (3% 1)

phases of this model are studied in more detail.
The critical properties are calculated by trans-
fer-matrix scaling (TS).** In particular the prob-
lem of anisotropic scaling is investigated. The
results indicate the following:

(i) For coverages 6 between 6~ 0.42 and 6 ~ 0.54
there is a (2% 1) phase with an Ising transition
and isotropic scaling.

(ii) For 0.54 < 6 < 0.82 there is another continu-
ous transition to a “(3x 1)” phase. At §=0.69
the line of zero chirality intersects the phase
boundary. Only close to this point do I find iso-
tropic scaling; otherwise there are two correla-
tion lengths £, and &£, parallel and perpendicular
to the rows of constant coverage which diverge
with two different critical exponents v, and v 4,
respectively. The ratio v /v, is smaller than 1
and varies with coverage 9.

(iii) For the (2x 1) phase transition the wave
vector ¢ of the critical correlations is locked in
at ¢/27 =%, whereas for the “(3x 1)” phase ¢
seems to vary continuously from ¢/27 ~0.3 to
©/2n~% with decreasing coverage. For zero chi-
rality, at 6~0.69, one has ¢/27 =3 correspond-
ing to a commensurate (3x 1) structure.

(iv) There is no indication of a floating phase;
the correlation lengths &, and &, of the “(3x 1)”
phase seem to grow exponentially with the sys-
tem size as in a usual ordered phase.

(v) Whereas the (2x 1) phase boundary can be
determined from experiments on small surface
patches, the “(3x 1)” transition is drastically in-
fluenced by finite-size effects due to anisotropic
scaling.

The results (ii) to (iv) are at variance with pres-
ent theories.’ *° This might be due to the fact
that the present method has not yet revealed the
true asymptotic behavior. However, experience
with many other models rather suggests that
there is a new kind of a phase transition with an-
isotropic scaling.

The results are obtained from finite-size scal-
ing (or phenomenological renormalization) intro-
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duced by Nightingale.'* .The correlation length £
of an infinite strip of finite width ~ is calculated
exactly from the largest eigenvalues of a transfer
matrix. The critical properties for N— « are ob-
tained from the scaling assumption

EL(, N =b"/"E (BY71E,b/N), (1)

where ¢ is a distance from the critical line 7,(9).
Note that b is the rescaling factor for the strip
width N, whereas £, is a length along the infinite
direction, i.e., perpendicular to the rescaled
length N. Therefore in general for anisotropic
models one has to consider anisotropic scaling
v,#v,. However, renormalization methods close
to four dimensions™ and exactly solved two-di-
mensional anisotropic Ising models'® show that in
most cases the critical behavior is isotropic.
Only in some special cases like Lifshitz points,®”
directed percolation,'® commensurate-incommen-
surate transition,® !° and three-dimensional liquid
crystals’® has anisotropic scaling been observed.
In practice one takes b =N/ (N - 1) and plots

£,(T,N)

Y =1“(51<T N- 1)) [‘“(NJi 1)] 1

as a function of temperature T as shown in Fig. 1.
In general,™ in a disordered phase Y, goes to
zero with N—«; in an ordered phase one has Y
~N showing an exponential increase of £, with N.
At a critical point or in a floating phase one has
for N=w Yy=v,/v,. Therefore the intersections
of the different curves Y in Fig. 1 determine 7T,
and v,/v,. The error made by using finite N val-
ues can be estimated from the N dependence of the
results. It turns out that for many models rather
small N values give good results.™

Here we study a centered rectangular lattice-
gas model with Hamiltonian

5= =J,[R, 7515, +33%S:S; R Y °S,S;
+R,33'S,S,8, ~hS; 1, (2)

where 3" denotes the summation over (1) sec-
ond-, (2) first-, and (3) third-neighbor pairs,
and (¢) the smallest triangles. S;=1 if an atom
occupies site i and S; =~ 1 otherwise. For de-
tails see Ref. 13. We use the coupling ratios R,
=—-3%, Ry=3%, and R, = — § with repulsive J, <0
which reproduce the experimental data of H/Fe-
(110) ** reasonably well. The same transfer ma-
trix of size 4"x 4" as in Ref. 13 is used which
-gives the length £, and the wave vector ¢ of the
asymptotic decay of correlations in the direction
of the (2x 1) or (3% 1) modulation.
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FIG. 1. Y, =Inlt (T, M/t (T, N- D] {In[N/(N=1]}"!
as a function of temperature for (a) # =4 and (b) 2=1.6
and different (N, N—1) values. 6, is the coverage at the
intersection point (T, v ,/vy).

c

Figures 1(a) and 1(b) show two examples for Yy
as a function of temperature. Figure 1(a) looks
like a usual phase transition except for the fact
that the curves intersect at Y~ 0.75 instead of
Y=1. For the pairs of strip widths N which I
was able to calculate, no strong N dependence is
seen, and so the intersections do not seem to ap-
proach Y =1 for N—. This means anisotropic
scaling with vy= v,.
~ Figure 1(b) shows Y ,(T) for h = 1.6 close to the

.point 2 = 1.5 where the (2x 1) and (83X 1) structures"

are highly degenerate at zero temperature'® and
an incommensurate floating phase is expect-
ed.* %% The nonmonotonic behavior is a con-
sequence of that fact that ¢, (T =0) is finite for
h =1.5 but infinite for 1.5 <% <4.5 where the (3x 1)
ground state is stable, Figure 1(b) indicates that
Yy~ N below the intersection point 7,. This
would rule out the possibility of a floating phase
where Y ,=1limy_, . Yy should be finite. Note that
in other models, with use of the same N values,
a floating phase can clearly be identified from Y.,
=~ 1, where Y, is obtained from extrapolating Y
to N=c by a power law.'*?*° :
Figure 2 shows v,/v, as a function of coverage
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FIG. 2. Ratio of correlation-length exponents v /v
as a function of coverage for the (2 x 1) and “(3x 1)”
phase boundaries at low and high coverages, respec-
tively. Curves ¢ and b are determined from strips with
N=(4,5,6) and (5,6,7), respectively.

determined from the intersections of Y,(T'). For
the transition to the (2x 1) phase at low coverages
the results are consistent with v, =v, in agree-
ment with the expected Ising transition. However,
for the transition to the “(3x 1)” phase at high cov-
erages, the ratio v,/v, varies strongly with cov-
erage. Although I have not used enough strip
widths N to account precisely for the corrections
to scaling there is no indication that one gets iso-
tropic behavior v, =v,. The data do not quite rule
out the possibility of an anisotropic transition
with v,/v,<0.5 being constant for 0.54 <8< 0.61,
a multicritical point with v,/v,~% at §~0.61,

and an isotropic transition for 0.61< 6<0.73. But
for higher coverages the anisotropy v,/v, seems
to vary continuously.

Figure 3 shows the critical temperature as a
function of coverage. In contrast to Ref. 13 where
isotropic scaling was assumed the “(3x 1)” phase
boundary extends over a broad coverage range.
On the dash-dotted line the interface free ener-
gies of light and heavy walls which are deter-
mined exactly for N="T are equal. Note that at
the top of this line the transition is isotropic (see
Fig. 2) in agreement with the predicted three-
state Potts point for zero chirality.* In fact, the
specific-heat exponent a derived from v, of Eq.
(1) is =0.51 for N=%, o =0.48 for N= %, and
a =0.44 for N= % which is not inconsistent with
the predicted® value a =3. Unfortunately, away
from this multicritical point the v, values show a
strong N dependence [also along the (2% 1) phase
boundary]; thus no reliable estimate for a is pos-
sible. Note that v, is determined from the slopes
of £,(T,N"*) and usually shows stronger N depen-
dence than T, and v,/v, which are determined
from the intersection of Y (7).
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FIG. 3. The solid lines give the phase boundary in the

temperature-coverage plane, derived from strips with

(curve @) N=(4,5,6) and (curve ) N=(5,6,7) [for the

(2 x 1) phase curves g and » cannot be distinguished in

the figure]. The dashed line is the disorder line 7' (6)

for N=5. On the dash-dotted line chirality is zero.

The dotted line shows the temperature T where £ (T,

N=6)=6,

The dashed line gives the disorder line T ,(0)
below which the wave vector ¢ is locked in at the
(2x 1) value ¢/27 =3%. Outside of this region ¢y
varies continuously with T and 6. I could not find
any scaling to the commensurate value ¢ =27
which Ref. 4 predicts for parts of the “(3x 1)”
boundary.

The dotted line in Fig. 3 shows the exactly cal-
culated temperature T4(6), where £[T4(6), N=6]
=6. While this line gives a good estimate of the
(2x 1) phase boundary, it fails to reproduce the
“(3% 1)” transition. This is due to the small val-
ue of v /v, which means that £, grows with a
small power of N only. For larger N values the
dotted “(3x 1)” region even shrinks somewhat
since the correlated regions become more and
more needlelike along the rows. Note that on a
real surface one usually has only small homoge-
neous patches of less than 100 lattice spacings.
Thus as a consequence of anisotropic scaling the
experimental phase diagram might look more like
the dotted line. In fact for H/Fe(110) a (3%x 1)
phase is observed for 0.62 <6 <0.69.

As in any numerical calculation of finite sys-
tems one never can exclude the fact that there re-
main drastic effects which change the results
qualitatively in the limit of infinite system size
N. However, from experience with many other
systems my results obtained from scaling to N
- indicate a new kind of a surface phase transi-
tion with anisotropic critical properties. The in-
commensurate critical wave vector and the be-



VOLUME 51, NUMBER 11

PHYSICAL REVIEW LETTERS

12 SEPTEMBER 1983

havior of the correlation length indicate an incom-
mensurate ordered “(3x 1)” phase. Since such a
phase should not exist according to present theo-
ries,' the nature of the “(3%x 1)” phase is still un-
clear. Thus I hope that the present results will
stimulate future experimental and theoretical
work on uniaxial surface structures.

Discussions and correspondence with K. Binder,
D. Huse, M. P. Nightingale, J. Yeomans, and
W. Selke are gratefully acknowledged.
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