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u(zcx)2EF Binding Corrections to Hyperfine Splitting in Hydrogenic Atoms
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A perturbative expansion of the electron's Dirac Coulomb propagator around a nonrela-
tivistic form is used to evaluate the one-loop nonrecoil corrections to ground-state hyper--
fine splitting in hydrogenic atoms. A contribution previously estimated as (n/r)(Zo)2
& (18.36+ 5)Ep is found to be (nfm) (Zn) (15.10+ 0.29)EF. Theory and experiment are
compared for muonium hyperfine splitting and consequences for the fine-structure con-
stant are discussed.

PACS numbers: 31.30.Gs, 12.20.Ds

Recent advances in the experimental measurement of ground-state hyperfine splitting in muonium'
and the extremely precise determination of hydrogen hyperfine splitting' present a challenge to theory
to complete the calculation of effects that contribute at the order of one-tenth of a part per million. A

major difficulty in achieving this goal is the complexity of the evaluation of the one-loop electromag-
netic mass shift of an electron bound in the combined Coulomb and magnetic field of the muon or pro-
ton. While the lowest-order effect of this contribution simply modifies the Fermi splitting by the
Schwinger correction, n/2', the calculation of binding corrections of relative order n(Zn) and o (Zo )
is required to this accuracy. (Zo. will be used in the following even for Z=1 in order to distinguish the
n coming from photons emitted and reabsorbed on the electron line from o. 's from exchanged photons. )
Although the n(Za) corrections can be worked out straightforwardly, ' at the level of (Zo. )' infinite
sums over states analogous to those encountered in the lowest-order Lamb shift4 are encountered; it
is important to have an approach that can easily handle such terms. The most recent calculation of
effects of this order by Brodsky and Erickson (BE), while not explicitly evaluating such sums, did
evaluate large constants associated with the double and single logarithms of Ze that come in at this
order. They found

bF. = [o.(Zn)'E„/n][- &in'(Zn) '+ (~7+ r'r —zln2)ln(Zn) '+ C], C=18.36+5.

It is the purpose of this paper to reduce this 0.6 ppm uncertainty by a direct evaluation of AE along
the lines of an approach previously applied to the Lamb shift. The result of this work can be ex-
pressed as

C= 15.10 +0.29. (2)

While consistent with the previous calculation, this new evaluation of C has an error sufficiently small
that the major uncertainties in the theoretical prediction for muonium are the uncertainties in the
muon mass (0.30 ppm) and the fine-structure constant (0.22 ppm). In hydrogen, the uncertainties in
the proton size (0.9 ppm) and polarizability (( 3 ppm) continue to dominate.

Since a detailed description of the calculation will be given elsewhere, I mention here only the most
important points. Part of the calculation is a direct repetition of the Lamb-shift calculation, with the
exception that one of the external Coulomb wave functions, gc, is replaced with a wave-function per-
turbation, P, where Q is the change induced in the Coulomb wave function by the dipole magnetic
field of the nucleus:

ABLS=- ie 2
d4p 1

(2rr) k2
d P & P [4(P) r p

& c(P —ki P —ki & —ko) 'r "0c(P )

+ Pc(P)r„Sc(P —k P' —k; & —&o)r "iI' (P')]. (3)

The other part of the calculation takes into account the change in the electron propagator arising from
its propagating with an energy shifted by the Fermi splitting (aR~ ), and in the presence of the nuclear
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magnetic field (LE~ ):
2
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While these energy shifts are exhibited in Feynman gauge, Coulomb gauge was found most convenient
for their evaluation. To evaluate the above expressions, the Dirac Coulomb propagator S c(x, x'; E) is
first expressed in terms of a Klein-Gordon type propagator G via

S c(x, x '; E)= [(Ec + Zn/'x) y, + i y .V + m] 6 c (x, x'; E},
where 6 satisfies

(
QQEcZB2Z(xtaag~( I )53( /)

x X2

(5)

(6)

In the absence of the bracketed terms, G can be expressed in a form essentially equivalent to the
nonrelativistic Coulomb propagator due to Schwinger' and Hostler. ' This form has the advantage of
separating out the parts of the propagator where the electron propagates freely or interacts once with
the Coulomb field of the nucleus, and having the effect of multiple Coulomb exchanges taken into ac-
count at the cost of a single integration. It was found that the bracketed terms need to be included
only as a first perturbation to the required order. With the above expressions multidimensional in-
tegrals were set up giving the energy shift, from which were subtracted terms that could be evaluated
analytically as the (a/2n)EF and a(Za}(ln2- ~3)EF terms, leaving an integral of 0(n(Zu)')E, that was
evaluated numerically. " No attempt was made to evaluate analytically the known logarithmic terms,
those terms being part of the numerical result. By varying Z, however, consistency with a —&in'[(Z
x u) '] was established. Because of the size of the numerical errors a separate determination of the
logarithm and constant was not possible. The result presented in Eq. (2) incorporates certain terms of
higher order in Ze, a large fraction of the calculation being valid to all orders, while other terms
explicitly of higher orders have not been included. These terms would have to be incorporated and the
numerical error in the present calculation reduced in order to make this part of the hyperfine-splitting
calculation good to less than a tenth of a kilohertz. Given the present uncertainty in the muon mass
and the fine-structure constant, this extension of the calculation is not yet necessary.

The theoretical prediction of muonium hyperfine splitting can be expressed in the form

&& = ~& &R (p&/pz')(1+m, /m&) [1+~~(Za) +a, + e, + e, + e~+ cr, —5 '],
e, = e(Za)(ln2- ~5), e, = —[8a(Za)'/3n]lnZa[lnZa —ln4+ 2~88~0 ],

e, = [a(Za)'/w] C„a,= [a'(Ze)/w]D„

a(Za) m, , m„31 m„28

The result of this calculation and the one reported in the preceding Letter" is the refinement of the

constants C, and Q„and results in the new prediction

&v hf, =4463304.5(1.6)(0.2)(l) kHz,

to be compared with the experimental value'

b. v „p——4463302.88(16) kHz.
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The first error indicated arises from the com-
bined uncertainties in the muon mass and the fine-
structure constant, and is now the largest source
of error. The second is the uncertainty arising
from numerical evaluations of the integrals. The
last error is an estimate of the effect of the last
term that remains uncalculated at this order, 0„
which includes the first binding correction to the
two-loop anomaly. The result is in agreement
with experiment, but a more precise measure-
ment of the muon mass may reveal a discrepancy.

An alternative approach is to use muonium hfs
to infer a value for the fine-structure constant.
I find

o. t,f,
' ——137.035988(20),

a, , ' =137.035993(10),

e i
' = 137.035 963(15),

e p
' ——137.035 968(23),

where the inferred values from electron g- 2, "
the ac Josephson effect, "and the quantum Hall
effect" are also given for comparison. It is in-
teresting that the two values obtained from QED
theory are in close agreement, but further ex-
perimental progress must be made before any
conclusions can be drawn.

My comments on hydrogen hyperfine splitting
can be brief: While the present result lowers the
theoretical prediction by 0.4 kHz, several effects
of comparable size must be taken into account be-
fore comparison with experiment can be made.
The recent calculations" of n'8 ~m, /m„ terms
remain to be extended to hydrogen, and can be
expected to contribute at a level of several tenths
of a part per million. The effect of the finite size
of the proton, which has an uncertainty of 0.9
ppm, needs further work, especia1. ly considering
recent results indicating a larger root mean
square charge radius for the proton. " A further
contribution from the polarizability of the proton
can also contribute up to 3 ppm": Recent experi-
mental advances' will help determine th~s term
more precisely. Given the large uncertainties in

the proton structure, the main use of completing
the pure @ED calculations in hydrogen hyperfine
splitting will be not to compare theory and experi-
ment, but rather to provide another source of in-
formation on proton electromagnetic radius and
polarizability.

I have benefited greatly throughout this calcula-
tion from conversations with Bill Caswell,
Q. Peter Lepage, T. Kinoshita, and Don Yennie.
This research was supported in part by the Na-
tional Science Foundation under Grant No. PHY82-
09011.
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