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Additional Radiative-Recoil Corrections to Muonium and Positronium Hyperfine Splitting
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A compact expression for one-loop radiative corrections to lepton lines in positronium
and muonium hyperfine splitting is presented. It is valid for hyperfine-splitting contri-
butions of order o’Ey, including the effects of recoil to all orders. For muonium, known
nonrecoil parts of this contribution are easily evaluated analytically, as is a previously
calculated radiative-recoil contribution of order «’Ey (m,/ my)In(m, /m,). Nonlogarithmic
radiative-recoil corrections obtained by numerical evaluation of this expression yield
new contributions of 2.64+ 0.07 kHz for muonium and —11.12+ 0.02 MHz positronium.

PACS numbers: 36.10.Dr, 12.20.Ds, 31.30.Gs

The largest correction to the lowest-order hy-
perfine splitting (hfs) arises from the Schwinger
correction to the magnetic moment of the electron.
It results from the emission and reabsorption of
a virtual photon by the electron. The bulk of this
effect can be taken into account by simply multi-
plying the leading contribution E by a/27. Other
corrections arise because the electron is in a
bound state. Thus they are sensitive to the in-
ternal structure of the anomalous moment as well
as other binding effects; they produce additional
powers of a.*? Furthermore, the electron is
bound to a particle of finite mass. This affects
the hfs in two ways. One is through the reduced
mass which simply modifies the magnitude of the
wave function at small distances. The other is
that it produces dynamical recoil corrections,
which are smaller than E; by the mass ratio m, /
m ,, as well as one or more powers of a. This
paper is concerned with the combination of radia-
tive and recoil corrections, which we call radia-
tive-recoil corrections.® A previous paper gave
the results for such terms containing powers of
In(m ,/m,).* There it was suggested that the ad-
ditive constants would be relatively small. We
find here that they are larger than previously ex-
pected.

The Schwinger correction can be expressed in
terms of the reduced mass and it involves no dy-
namical recoil effects. The latter effects appear
when the internal structure of the anomalous mo-
ment and the other contributions associated with
Fig. 1 are taken into account.® Since the vacuum
polarization contribution has been adequately dis-
cussed previously,® this paper deals only with the
contributions illustrated in Fig. 1. Their leading
nonrecoil correction of relative order o? is
a’E (In2 - %), The subject of this paper is the
setting up of an expression valid to this order in
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@ and to all orders in the mass ratio m, /m .
This approach is essential for application to posi-
tronium where no expansion in a small mass ratio
exists, and it is very useful for the computation
of the additive constants associated with the pre-
viously determined (m, /m )n(m ,/m,) terms,

We now present the most salient features of the
calculation, leaving a more detailed description
to a later publication. Care must be taken that
contributions from graphs in which the virtual
photon spans additional Coulomb interactions are
of a higher order than those considered here., It
is possible that such graphs contribute in the or-
der of interest because the electron is close to
its mass shell and integrations can yield inverse
powers of @. To control this infrared sensitivity,
we use the Fried-Yennie gauge® while keeping the
electron off mass shell; then spurious terms of
lower order explicitly cancel, insuring that these
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FIG. 1. Graphs contributing to the radiative correc-
tion on the electron line. A symmetric set occurs for
the muon line.
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contributions are of higher order than o?E.

There are several sources of simplification, A
great many numerator terms may be neglected
since we need keep only Dirac structures which
contribute to the hyperfine splitting. Also we re-
strict our attention to terms of order a’Ey,
which allows the neglect of wave-function momen-
ta in comparison to loop momenta. The result is
that the wave-function dependence decouples from
the rest of the calculation and produces a factor
which is the square of the nonrelativistic wave
function at the origin. This factor depends on the
reduced mass m,. The internal integrations of
the kernel produce a factor of &®E; times some
function of m, and m , The general features of
the analysis of the loop integrations will be de-
scribed briefly.

First it should be recalled® that the contribu-
tions under consideration contain pieces of the
same order as the Schwinger contribution. Be-
cause of the approximation of neglecting the wave-
function momenta inside the kernel, these pieces
will not precisely reproduce the Schwinger con-
tribution., We simply identify and discard them ‘

where p?=p 2 -p>+ie€and
o]
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The polynomials F are given by

since that does not affect the calculation at the
present order of interest, For muonium, they
also include the nonrecoil terms of order a?E .
We identify and evaluate these as a check on our
formalism., The calculation is relatively simple.
Then we devise a numerical procedure which
eliminates them since they are much larger than
the terms we seek., This procedure is not rele-
vant for positronium since the two effects are of
the same order of magnitude.

The actual techniques will now be outlined, We
first study the five contributions in momentum
space and find various cancellations between
them. This has the great advantage of eliminating
spurious In*(m ,/m,) terms. Next the integration
over the loop containing the virtual photon is car-
ried out at the expense of the introduction of in-
tegrations over Feynman parameters x and y.
Contributions from all the graphs are combined
and rearranged by making extensive and judicious
use of partial integrations with respect to x and
y. The result may be expressed in various forms.
One of the forms which we have found useful is
presented here to give the flavor of the calcula-
tion:

1
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’ Do=p2+2mep0’ A:xmez—y(l—xy)pz—y(l—x)zmepo-

F,=2m,pxy(—2+5y+4x = Txy) + yp3(1 — 6x — 26y + 3Txy + 6y® — 2x% — 12x%y® + 29x® — 16y Inx),
F,=16m,2p?xy?(1 = 3y — x + 3xy — 2y Inx) + 4xy?(p?)*[Inx(2 - 8y + 85%) = (1 = x)(1 — y = 29?)],

Fy=xym, p*(— T+ 4x + 8y — 2xy) = 2p, p*y*(1 = x)(1 - 3),

F,==yp*(1 = xy)/m,.

The terms with denominators D, arise from the
static anomalous moment; aside from the Schwing-
er correction, they cancel each other to the or-
der of interest. Here m, and m , may be regard-
ed as generic. They may be interchanged to give
corrections in the muon line or set equal to give
corrections for positronium.

The form given here is most convenient for the
muon-line radiative corrections in muonium. The
reason is that it was designed to make manifest
the low-energy Compton scattering theorem. As
p -0 it is dominated by the effects of the anoma-
lous moment of the muon and other effects vanish.
The nonanomalous moment terms are not sensi-

(2)

tive to low-momentum details, and this renders
them simpler to evaluate numerically. Other
forms are more convenient for other purposes
such as the evaluation of the electron-line radia-
tive corrections. They will be presented in a
more complete paper.

We have attempted the analytic evaluation of
some of these integrals for certain terms where
the radiative corrections are in the electron line
and the muon propagator is rearranged in a con-
venient way which emphasizes the dominant terms
in an expansion in powers of m, /m » We had ex-
pected these terms to be a simple numerical mul-
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tiple of (a/w)*(m, /m WEp, but instead they were
72 times such an expression. This perhaps ac-
counts for the relatively large magnitude of our
final result. While it might be feasible to calcu-
late all terms of the order of interest analytical-
ly, the effort seems prodigious. Therefore we
present here the results of a numerical evalua-
tion of these integrals that allows extension of
the calculation to positronium (m u= m, ) where
the analytic work is even less tractable. By ro-
tating the p, contour (p,—~ip, crossing no poles
or cuts), (1) becomes a real four-dimensional
integral which we have evaluated by the adaptive
Monte Carlo program VEGAS.” The results are
presented in the following equations, where in
muonium the 1In(m u/me) term previously calcu-
lated has been subtracted out to show the new con-
tributions, The overall result for muonium is

E=2,64+0,07 kHz, (3)
and for positronium
E=-11,12:0.02 MHz. (4)

While the result for positronium is only one of
many terms of this order, the result for muonium
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should be the last contribution larger than a kilo-
hertz. The discussion of the full experimental
status is given in the following paper.®

We have benefited in the course of this work
from frequent conversations with G. P. Lepage.
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