
VOLUME 51, NUMBER 11 PHYSICAL REVIEW LETTERS 12 SEPTEMBER 1983

Quantum Kolmogorov-Arnol'd-Noser-like Theorem: Fundamentals of
Localization in Quantum Theory

Gabriel Hose ' and Howard S. Taylor '
Fundamenteel Onderzoek der Materie, Instituut voor Atoom en-Moleouulfysioa,

&098 SJ Amsterdam, The Netherlands

(Received 13 May 1983)

A quantum Kolmogorov-Arnol'd-Moser-like theorem is formulated with use of an exis-
tence condition of a unique transformation between eigenstates of integrable and nonin-

tegrable Hamiltonians. This condition determines the ability to assign local quantum
numbers to eigenstates of nonintegrable Hamiltonians and explains localization phenome-
na..
PACS numbers: 03.65.ae, 03.20.+i, 03.65.Sq

For systems with nonintegrable Hamiltonians
the theorem named after Kolmogorov, Arnol'd,
and Noser (KAM) established the existence in
classical mechanics of localized stable motion,
namely quasiperiodic orbits in coordinate space
or invariant tori in phase space (for the general-
ized existence conditions and the proof, cf.
Arnol'd'). For purposes of analogy with what
shall be done below the important points of KAM

theorem are reviewed. Assume that a noninte-
grable Hamiltonian in N degrees of freedom may
be written as II=H, (J)+A, V(J, 0), where H, is an
integrable Hamiltonian cyclic in N action vari-
ables H. Since II, is integrable it generates
phase -space trajectories that are conditionally
periodic; that is they lie on N-dimensional sur-
faces in phase space called tori. The points (p, ,
q,. ) on a, torus satisfy N relations p, = BS(J)/Bq, ,
where S is the generating function that solves the
Hamilton-Jacobi equation for H, . Each torus is
completely determined by N values of the action
variables J. The KAM theorem states that for
sufficiently small perturbations (A. «1), most of
the unperturbed tori of B, do not vanish but are
only "slightly deformed, " so that most of the tra-
jectories generated by the perturbed B are still
conditionally periodic. The proof of the KAM

theorem rests on a convergence argument of per-
turbation theory, where starting from an unper-
turbed (and nonresonant) torus of H„and if A.

«1, a perturbed torus can be found by conver-
gent perturbation solution of the Hamilton-Jacobi
equation for the nonintegrable H. The perturba-
tion method is a sequence of successive canonical
transformations, each of which is close to the
identity transformation, that if convergent can
be truncated to eliminate the angle-dependent
terms and to yield an integrable Hamiltonian
close to the fully perturbed H. The same se-

quence of canonical transformations generates
the perturbed torus from the unperturbed one,
and is therefore the generating function that
solves {in a convergent perturbation manner) the
Hamilton-Jacobi equation. The existence of a
torus that is the limit of a convergent sequence
allows the calculation of the actions from the N
action integrals Pp dq defined for N independent
closed paths about the torus. These actions are
local since they are defined on a torus which it-
self is local and they impose the N relations
(action integrals) on original dynamical variables
p and q which causes localization in both position
and phase space.

The motivation for seeking a similar theorem
in quantum mechanics follows. In quantum theo-
ry localization and the ability to assign uniquely
(or equally important, the inability to assign) N

quantum numbers to an eigenfunction of a noninte-
grable H has never been demonstrated as the
existence conditions which must be satisfied
have never been given. Of course, no end of solu-
tions have been found in various problems that
physically show localization phenomena: for
example, narrow resonances behind potential
barriers which could be modeled as arising from
bound states in the continuum, ' and the success-
ful assignment of atomic states according to LS
or jj coupling schemes. Many other localiza-
tions are only explained approximately. For
example, the chemical bond (a truly localized
quantity) in ground and excited states is explained
by obtaining wave functions and energies that
show that the bond exists only after the Born-
Oppenheimer adiabatic approximation has been
made. Even if an exact (or nearly exact) solu-
tion to the wave function could be obtained with-
out the adiabatic approximation and which did
show localization in bond regions, the chemical
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bond mould still be hard to explain in the sense
that the total molecular bare potential generally
shows no walls or barriers that would confine
the electron cloud to the bonds. Pano' has re-
cently called attention to other problems in atom-
ic and molecular physics where an exactly simi-
lar situation occurs, namely the quadratic Zee-
man effect, certain doubly excited autoionizing
states in helium, and collinear chemical reac-
tions such as I+HI-IH+I. 4 In all of these cases
the solution of the wave equation exhibits localiza-
tions which could only be explained in the limit
of weak perturbations or in an adiabatic picture.

In a recent paper' we have established a criter-
ion to test for quantum states that correlate with
the classical quasiperiodic trajectories that yield
the quantum energy levels by semiclassical quan-
tization. Our criterion is essentially an exis-
tence criterion for the convergence of perturba-
tion-iteration expansion for the energy starting
from an unperturbed eigenstate of an integrable
Hamiltonian. We had not realized it at the time,
but this existence criterion (slightly modified be-
low) is in essence the quantum analog of the clas-
sical KAM theorem. As such it is precisely the
existence condition for assigning N quantum num-
bers to eigenfunctions of nonintegrable Hamilton-
ians, and in the same way is the explanation for
unexpected localizations. '4 We rederive our
criterion in the spirit of the classical KAM theo-
rem.

Consider II and H, to be respectively noninte-
grable and integrable Hamiltonians in N degrees
of freedom. I et J represent a set of X commut-
ing observables (dynamical variables) that com-
mute with H, but not with H. Since [H„J]=0,
the eigenfunctions of B, could be chosen simul-
taneously as eigenfunctions of the set J. When
B, has a degenerate spectrum it has several
sets of commuting observables; the correspond-
ing eigenbases are related through unitary trans-
formations within the degenerate subspaces of H,
For a given basis, each eigenfunction is uniquely
labeled by N quantum numbers that represent
the eigenvalues of the observables 4 that define
the basis. To see the analogy with the classical
KAM theorem it suffices to consider one set J.
In the classical limit' the eigenfunctions of B,
that are labeled by the set J are usually identi-
fied with the unperturbed tori of the classically
integrable H, that commutes (in the Poisson-
bracket sense) with the action variables J;

Let + and @ be eigenfunctions of B and B„re-
spectively. If there exists a one-to-one trans-

formation relation between the particular states
C and 4, then since @ is uniquely labeled by N
quantum numbers, so will 4 be. The existence
condition of a one-to-one transformation between
4 and 4 is'

where 4 and 4 are both normalized to unity. It
can be immediately seen that condition (1) estab-
lishes one-to-one correspondence between the
states 4 and 4. Since (4'I4)=1, it is guaranteed
that if one eigenfunction of the nonintegrable B
satisfies condition (1) for a, particular 4', then
it is the only one that does so. The converse
folloms trivially. Note that if 4 does not satisfy
condition (1) for any eigenstate of H, then it is
possible that two eigenstates of B mould have
equal weights on that 4 . What must be realized
is that condition (1) provides a, quantitative meas-
ure as to horn close in Hilbert space the eigen-
states 4 of H, and 4 of B should be, so that a
unique transformation shall exist from the un-
perturbed 4 to the perturbed C. Classically,
this condition is vaguely stated' as "sufficiently
small pertrubation. " It is shown below that in a
manner similar to the KAM theorem, condition
(1) will also guarantee the existence of an energy-
independent effective Hamiltonian defined on part
of the Hilbert space, the unperturbed C, and
which is close to H in the sense that when operat-
ing on 4 it gives the same energy (to any desired
accuracy) as does H while operating on the per-
turbed 4. This is analogous to shifting the un-
perturbed torus onto the perturbed energy shell
in the classical phase space.

Unlike the KAM theorem, the present theorem
does not prove a Pnori existence in terms of
analytic properties of B„albeit by placing al-
most unacceptable restrictions on the perturba-
tion. The nem theorem, in fact, places no un-
usual limitations on B and in this sense is more
general. Here condition (1) is a test for exis-
tence given the exact solution 4 which has been
constructed as below or by other methods. Exis-
tence in general is then demonstrated by simply
recalling that the eigenstates of a Hamiltonian
which is known to be nonintegrable' have already
been shown' to satisfy condition (1). Numerous
other examples are available from, say, the
success of the normal-mode model to describe
the low-lying vibrational states of molecules.

By use of the projector operator onto 4, P
=

~
4)(4~, and its complement @=1-P, it is

possible to transform the Schrodinger equation
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(2)

The perturbed wave function is obtained from P4'
by the wave-operator transformation' that yields
4' expanded in the basis of H„

%=A(E)P4 =[(P+(E -QHQ) 'QHPjP@. (3)

Multiplying (2) by 4 * and integrating, we obtain,
after eliminating (C

~
+) from both sides of the

equation,

E = (4iPHP+PHQ(E —QHQ) 'QHPI 4). (4)

for the nonintegrable Hamiltonian, H4' =E4,
into a nonlinear equation for an energy-dependent
effective Hamiltonian defined on 4, '

Huff(E)P+ = [PHP +PHQ(E —QHQ) ~ QHP]P4

Assuming, without loss of generality, that the
eigenvalues of QHQ are known, we can proceed
to solve Eq. (4) for the perturbed energy by an
iteration procedure starting from an initial guess;
for example E ' =E„ the unperturbed energy.
The advantage of this iteration procedure over
other methods (e.g., the Newton-Haphson method)
of solving Eq. (4) is that only here does the itera-
tion sequence E~' ~ uniquely give, via Eqs. (2)
and (3), sequences of H, ff (E~' ~) and 4(E&' ~ )
which show the evolution of H,«and 4' to their
limits. Note that while the function series 4(E' ),
if convergent, yields the exact eigenfunction of
H, the limit of H, ff(E '

) is not the exact Hamil-
tonian. This is fortunate as it is seen below that
H f f is integrable but H by def inition is not. In
the case where P=

~
4 ) (4 ~, the iteration proce-

dure leads to a simple formal continued-fraction
expression for H,«,

H, g( =PHP+PHQ 1
(-QHQ+(C iHP+PHQ 1

-qH q+ (C IHP+PHq
qual) ) ~~~.

The infinite continued-fraction expression (5)
is strictly equivalent to H, fq(E) defined in Eq. (2).
If the iteration procedure diverges, it means that
H f f is defined only at the perturbed energy (or
by infinite continued fraction) and is therefore en-
ergy dependent. However, if the iterations con-
verge, then to any desired accuracy there exists
a finite continued-fraction approximation to H, ff.
This truncated H, « is analogous to the classical
Hamiltonian which is "close" to the exact noninte-
grable H. Furthermore, comparing Eqs. (2) and
(3) it is seen that H, ff (E) = PHA(E); it is clear
therefore that any finite continued-fraction H, f f

yields a finite continued-fraction expression for
the wave operator A that performs the transform-
ation from the unperturbed 4 to the perturbed 4.
The crucial point is that the iteration procedure
generates a sequence of functions in Hilbert
space, as each iteration step is equivalent to a
finite continued-fraction transformation from the
unperturbed 4. Convergent iterations produce
therefore a sequence of functions which begins
with the unperturbed 4 and has a definite limit,
the perturbed O'. This is exactly the situation
in the classical KAM theorem whereby a sequence
of canonical transformations from the unper-

-QHQ +E,

turbed torus has as its limit the "slightly de-
for med torus ~

Now H, ff is defined only in P space; it vanishes
in q space. Since the P space is just 4' which is
an eigenfunction of N commuting observables J,
the latter must also commute with H, ff. However,
this commutativity means that the observables J
are constants of the motion for H, «only when
the latter is energy independent; i.e., it is a con-
vergent continued-fraction Hamiltonian. %e have
previously shown' that condition (1) is the con-
vergence condition for the iteration solution of
Eq. (4). Hence, Eq. (1), a,nd its one-to-one cor-
respondence property, is an existence condition
for a unique energy-independent H, « that would
generate a unique wave-operator transformation
from the unperturbed 4 to the perturbed +. The.
exact constants of the motion for H, «defined on
4 are therefore the local (as 4 is only a part of
4') actions for @. No other eigenstate of H can
have the same local actions as 4 which is there-
fore uniquely assigned by the corresponding quan-
tum numbers that label 4.

In summary, the convergence condition of per-
turbation theory, A. «1 in the classical ease and
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~
(4

~
4)

~

' & 0.5 in the quantum case, is a criter-
ion of localization, as it guarantees the existence
of an integrable Hamiltonian which is "close" to
the exact nonintegrable B so as to generate a uni-
que transformation between the unperturbed and
the perturbed classical tori, or quantum wave
functions. Physically +, an eigenfunction of a
nonintegrable Hamiltonian, is localized because
it is dominated in the probability-density sense
by an eigenfunction, 4, of an integrable B,. In
this respect condition (1) is the quantum loca, l-
ization condition analogous to N local actions in
classical mechanics, fp dq. Both "hold" the
solutions in place. Hence, it is a necessary and

sufficient condition for a solution with N local
quantum numbers to exist.

Finally, we mention that the KAM theorem, as
well as the present derivation of its quantum

analog, is applicable to bound systems. Yet it
is well known that quasiperiodic trajectories
were found in regions where no potential walls
exist to enforce classically bound motion, ' and
were shown to be related to resonances in the
continuum. " Complex dilatation analysis, "prior
to the perturbation analysis, provides a con-
tinuum KAM analog and a way for a unique as-
signment of resonances.
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