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Distribution of Energy Eigenvalues in the Irregular Spectrum
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The distribution of energy eigenvalues in the irregular spectrum is derived in the semi-
classical limit h 0 by use of a plausible assumption on the spatial distribution of the
corresponding eigenfunctions.

PACS numbers: 03.65.Sq, 03.20.+i, 31.15.+q

Percival" used the terms "regular" and "ir-
regular" to distinguish between near-classical
quantum systems whose classical motion is re-
spectively quasiperiodic and ergodic. The dis-
tribution of energy eigenvalues in the regular
spectrum has been obtained by Berry and Tabor';
it is random, with spacing between adjacent levels
distributed a la Poisson. Here I determine the
eigenvalue distribution in the irregular spectrum.

Berry and Tabor studied the regular spectrum
in the semiclassical limit A -0, using the formu-
las of semiclassical quantization. There are no
such formulas for the irregular spectrum, and so
a different approach is necessary. The energy-
level pattern in the irregular spectrum is obtained
by combining a natural assumption on the spatial
pattern of "irregular" eigenfunctions '.hat all
eigenfunctions of roughly the same energy look
roughly the same —with the "equations of motion"
governing the eigenvalues as A varies. One is
led, as k-0, to a statistical mechanics of energy
eigenvalue s.

Not all classically ergodic systems will have
irregular eigenfunctions, even in the semiclassi-
cal limit; it is now well-known that classica1 cha-
os does not imply quantum chaos, ' ' whatever the
latter may be. For the rest of this paper the
term "irregular" will be reserved for quantum
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systems having irregular eigenfunctions, without
reference to the classical mechanics of such sys-
tems.

Let the Hamiltonian be B=—h'D+ V, where D
is a real differential operator in d & 1 dimensions,
V is the potential, and the spectrum of H is dis-
crete. We may think, for example, of a single
particle confined to a d-dimensional potential
well. Let k'=exp(- A), so that h-0 is A. -~, and
let ly„(A)j be orthonormal real eigenfunctions of
H, with energies fE„(A)). We may assume that
the energy spectrum is nondegenerate; accidental
degeneracies will be broken as A. varies, while
symmetry-enforced degeneraeies imply that the
quantum system cannot be considered ergodic.
Then the equations of motion for E„(A) and the
various matrix elements V „(A.) = (p (A), Vcp„(A))
are
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To see how the spatial pattern of the eigenfune-
tions can determine the spectral pattern of the
eigenvalues, consider first the regular regime.
Here two eigenfunctions of roughly the same ener-
gy typically look very different: They differ great-
ly in the division of energy among the vibrational
modes in potential V. Where these functions over-
lap in space, they beat violently against each oth-
er, and the matrix element V „of the smooth
potential V is very small ".ypieally, exponential-
ly small with Fi, V „=O(expt- ( )/A] ). Com-
pared to the energy level spacings, which are
O(A"), such a matrix element is zero. Further,
the diagonal elements V„„and V are typically
very different, because states n and m, with very
different spatial distributions, sample very dif-
ferent regions of the potential; the order of mag-
nitude of the difference V„„-V is independent
of k.

Consider N consecutive levels centered around
E,. Each state will couple strongly only to states
that do not differ greatly from it in the assign-
ment of vibrational quantum numbers; these
states will differ in energy by O(h) from E„.
therefore for small 6 we expect all V matrix ele-
ments among the A' states to be effectively zero.
As A. varies, each energy E„(A) moves with a dif-
ferent "velocity" dE„/dA, according to Eq. (1),
the velocities being O(1) as A'-0. The "accelera-
tion" d'E„/dA. ' is no greater than O(h '), accord-
ing to Eq. (2), and so if we follow these energies
for LA. =O(Ii"'), e & 0, we may consider the ve-
locities constant. Think of the energies as posi-
tions in one dimension, and A. as the time: We
have a very dense gas—"mean free path"=O(h')—of one-dimensional free particles making vast
numbers of free-particle collisions during the in-
terval for which we follow them. At any instant

'.hat is, at any particular value of h—we expect
the energy levels to distribute themselves along
the energy axis as one-dimensional free particles
distribute themselves along the line: at random,
with a Poisson distribution of nearest-neighbor
spacings.

Obviously this argument is no substitute for
the beautiful analysis of Berry and Tabor, ' but it
conveys the essence of the situation.

In the irregular regime the assumption is that
all eigenfunctions of roughly the same energy
look roughly the same: Each is spread over the
entire classically allowed region of configuration
space appropriate to its energy, with coarse-
grained probability density that agrees well at
each point in space with the classical microcan-

onical density at that energy. This is the stan-
dard hypothesis for the irregular regime' ' and
is usually expressed as the expectation that the
Wigner phase-space densities associated with ir-
regular eigenfunctions of energy E will in some
sense converge, as 6 -0, to the classical micro-
canonical density at energy E. Support for this
hypothesis has been published by Hutchinson and
Wyatt, "who computed the Wigner distribution as-
sociated with eigenstates in the Henon-Heiles po-
tential, finding reasonable agreement with micro-
eanonical distributions at high energy, where the
classical motion is irregular.

The irregular-eigenfunetion hypothesis has two
important implications for the eigenvalue equa-
tions of motion. First, there are no strong selec-
tion rules in the irregular regime": We cannot
throw away off-diagonal V matrix elements, be-
cause all these elements are of the same order of
magnitude in h. Second, the diagonal V matrix
elements are roughly the same for states of rough-
ly the same energy, so that the energy eigenvalue
curves E„(A) run roughly parallel to each other.
It is fluctuations about the mean drift of the en-
ergy levels that determine the distribution of eig-
envalues in the irregular spectrum.

Let us estimate orders of magnitude. As in the
regular regime, a given state n couples mainly
to states that lie within O(A) in energy from E„;
outside this range, the mismatch in local wave-
length kills the V „ integral. Since the mean lev-
el spacing is O(k"), state n couples to O(h' ")
others, as Percival first observed. ' From the
sum rule Q „V „'= (y„, (V' —V„„')y ) = O(1),
we see that V „'=O(A~ '). The fluctuations in
diagonal matrix elements should be of the same
order of magnitude, V„„'-(V„„)'=O(A" ').

In the regular regime, with strong selection
rules, V matrix elements between nearby states
are small compared to the mean level spacing;
in the irregular regime, with no selection rules,
they are large.

Let us now follow a number iV» 1 of consecutive
levels, centered around E, at A„ for a short in-
terval aA. centered on A . We shall imagine doing
this many times, holding A and E', fixed while A,

-~; by a "short" interval AA, we mean dA.

=O(A, '), e & 0, where Pi,'=exp(- A, ). We remove
the mean level drift by defining e„(A) = E„(A)
—E(A), where E(A) = E, + (A. —A,)((V), —E,) and (V),
is the classical microcanonical average of V at
E

(v), = fdr vf(E, a)/Jdr 5-(E, -a).
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and therefore negligib]e beside the 0(A, ) terms that we keep. Similar considerations justify the

same approximation in Eq. (3). (3) To make the problem finite, we adopt "periodic boundary condi-
tions"; i.e., we imagine N energy levels e, «. . . e„arranged on a circle of length N(EE)„each level
interacting with its N' nearest neighbors according to Eqs. (1)-(3), under the convention that e~„
=e, +N(EE)o.

Equations (].)-(3), with the modifications noted above, scale nicely with Ii,. Let & = &/&, ' and

define new variables x„(7)and u „(~), which are O(1) in magnitude, by

e„(A) =x„(w)(&E), v „(&)=u „(~)&&E),/@o

Then
dx„/d~ =u„„, (4)

Then v„„=V„„-(V), is the fluctuation in the diag- all the terms in the sum we drop; but in this sum
onal matrix element, and, with the notation v „ interactions of state n with higher-energy states
= V „ for the off-diagonal elements, Eqs. (1)-(3) almost cancel interactions with lower-energy
still hold when all E's and V's are replaced by states, because of the energy denominator. In
e's and v's. fact, in the sum we may replace v „' by its aver-

These equations are now modified in the follow- age over a number N" of states m, where 1

ing three ways: (1) e„ is dropped from the right- «N" «N', and this average should be a smooth
hand side of Eq. (1). Since e„ is 0(k,") and we function of e and e„, concentrated on the range
shall follow the levels for an interval aA. = O(h, '), Ie —e„ I

= Q(S,) and smoothly dependent on the
this approximation is inconsequential in the limit mean energy (e +e„): (v „')= fe, 'f ((e —e„)/
h, -0. (2) We allow each level to interact only h„(e +e„)), where f(x, y) is independent of A,
with its N nearest neighbors; i.e., we set v „and even in x because the v matrix is symmetric.
=0 for Im-nI & N', where 1 «N'«N. Consider With the notation (~E), for the mean level spacing
Eq. (2). The terms we keep are O(h, '). So are at A„ the sum over m that we neglect is, to

terms of order k0 ',
f((e e )/5, (e +e ))

e„—e

du„„/de. =2+u '/(x„-x ),

du „/d~ =Qu, u, „I(x —x, ) '+(x„-x,) ']+u „(u —u„„)/(x„—x„). (6)

We are now dealing with N points x1 & o c x N
on

a circle of length N. The interval AA. over which

we follow these points shrinks to zero as h 0
-0,

but the scaled interval AT goes to infinity. To
find the distribution of energy levels in the ir-
regular spectrum~o find the distribution of the
N points (x„) on the circle of length N—we must

integrate Eqs. (4)-(6) for an arbitrarily long
"time" v.. We should therefore apply the methods

of classical statistical mechanics.
The "dynamical variables" are the N Q„), the

N diagonal elements (u„„), and the NN' off-diagon-
al elements tu „}.Consider the continuity equa-
tion Bp/8 w + div(pv) = 0 for a probability density
in the space of these variables. We look for an
"equilibrium" solution, Bp/B~ =0. The flow ac-
cording to Eqs. (4)-(6) is not divergence-free,

so that an equilibrium p will not be a constant of
the motion; but notice that

/

4

BQ Q —Q
1VV =Q mn Q mm nn

+mn xn xm

X.—x. d lnIIIx -x I,x„—x dT n m

where the sum and the'product are over interac-
ting pairs of levels, each pair counted once. This
implies that the continuity equation can be written
as (d/d7)(p/QIx„— x I) =0 and therefore that any

p of the form cgIx„-x I, where c is a properly
normalized constant of the motion, will be an
equilibrium density. There are many constants
of the motion: motion according to Eqs. (4)-(6)
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generates a real orthogonal transformation of the
u matrix; all the orthogonal invariants — -tru, tru',
etc.—are constants of the motion. Let us assume
there are no others. Then any equilibrium p is
a product of a function of u matrix elements and
the factor Q~x„-x ~. The eigenvalue distribu-
tion is therefore independent of the constant of
the motion c, and the joint distribution of N eigen-
value positions x„on the circle of length N is

P(x„... , x„)~ Ilix„-x i. (7)

Equation (7) is the principal result of this paper.
What is the level-spacing distribution predicted

by Eq. (7) P In the proper limit —N- ~, then N'
- ~—it must be the same as in Dyson's "circular
ensemble, ""which involves particles on a circle
with logarithmic potential of interaction, the dis-
tance between particles being Cartesian distance
in two dimensions rather than distance around the
circle. Dyson's level-spacing distribution in turn

is equal to the limiting distribution in the "rea1
Gaussian ensemble" which has been beautifully
analyzed by Mehta" and by Gaudin" and found to
be very close to the Wigner distribution P(S)
= (n/2)S exp(- wS'/4), where S = sE/(zE). There
is some evidence for the Wigner distribution
from recent numerical work on the quantum mech-
anics of classically ergodic two-dimensional
"billiard" problems: McDonald and Kaufman"
and Casati, Valz-Gris, and Guarneri" calculated
eigenvalues for the stadium, while Berry" stud-
ied the Sinai billiard, and in all cases the com-
puted P(S) agrees with the Wigner distribution to
within the statistical uncertainty in the computed
distribution. On the other hand, Buch, Gerber,
and Ratner" computed P(8) for a two-dimensional
model of Morse oscillators with strong kinetic
coupling and found that the data were fitted sig-
nificantly better by a Brody distribution" differ-
ing somewhat from the Wigner form; the authors
speculate that this means that their coupled oscil-
lator model is not "fully chaotic. "

More extensive numerical work on eigenvalue
distributions in the irregular spectrum w'ould

clearly be helpful; for one thing, it would be nice
to have numerical evidence that the Mehta-Gaudin
spacing distribution is to be preferred to the Wig-
ner distribution, although a simple estimate of
the size of the calculation needed is discourag-
ing. " There are also a number of interesting
formal questions left. Here are two: (I) In the

regular spectrum, successive level spacings are
uncorrelated; this is not so in the irregular spec-
trum. What is the correlation predicted by Eq.
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(7) '! (2) Equations (4)-(6) have an equilibrium
solution, u„„=0, u „=c, x„=n; i.e., equal-
strength interactions and equally spaced energy
levels. This is, of course, the spectral pattern
in any narrow energy range for a class of famil-
iar ergodic systems: one-dimensional vibrations
in a simple potential well. Is this solution stable .
If so, how does that affect the statistical mechan-
ics leading to Eq. (7)P
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'Let us determine the level-spacing distribution by
diagonalizing an N xN "irregular matrix" and present-
ing the data in a histogram. Except in the tail of the
distribution, the Mehta-Gaudin and Wigner distribu-
tions differ by only (4—5)fp so that in a given bar of
the histogram, containing a fraction f of the distribu-
tion, we will want to be sure —at, say, the 957p con-
fidence level~hat we are within 2% of the correct
value. An elementary calculation [ see, e.g. , W. Feller,
An Introduction to Probability Theory and Its Applica-
tion (Wiley, New York, 1957), 2nd ed. , Vol. 1] gives
the estimate N ~ 4(1—f)l(0.02) 2f. For a histogram with
20 bars, f =- 0.05 per bar and N -=200 000. In the tail,
the Mehta-Gaudin and Wigner distributions differ by
circa 20$, and so a calculation accurate to 10$ will
suffice, but only circa if& of the distribution is in the
tail (f=0.01), so that N —= 4/(0. 01)2f=—40 000. In either
case, it is not a small calculation.


