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The phenomenon of "dynamical compactification" in a universe with 4+n, dimensions
is studied, and it is found that if the whole process is adiabatic, entropy is pumped into
the effective four-dimensional universe. Some cosmological consequences of this fact
are discussed.
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It is possible that space-time has more than
four dimensions and that the extra ones have so
far escaped detection. ' The earliest suggestion
in this respect is Kaluza and Klein's idea that the
topology of an extra dimension is a circle 9' of
a very small radius, obtaining in this way a uni-
fied theory of gravitation and electromagnetism.
The modern version' of this idea, called spon-
taneous compactification, proves that a manifold
of the type V, & C„,where V4 is the ordinary
four-dimensional space-time and C„ is a com-
pact space, is a static solution of Einstein's equa-
tions in D= 4+n, dimensions and, as such, is as
good a candidate for the vacuum of the quantum
theory as D-dimensional Minkowski space.

In the event that the space-time has indeed ex-
tra dimensions, it is not sufficient to have proved
that spontaneous compactification occurs; cos-
mological dynamics of the extra dimensions must
also be studied, ' explaining why the universe ap-
pears as four dimensional now, and what are the
consequences of the disappearance, for all prac-
tical purposes, of the extra dimensions, while
the known ones are well described by a Friedman-
Robertson-Walker type of universe.

The main point to be made in this Letter is that
it is possible to imagine in the framework of clas-
sical general relativity, a scenario in which the
extra dimensions keep shrinking while the normal
ones expand, and that if the whole process is
adiabatic in the D-dimensional sense, a large
amount of entropy can be produced. The produc-
tion of entropy by this process can perhaps be
viewed as somewhat similar to the sudden smash-
ing of a LP-dimensional lattice into a D —1 dimen-
sional one, with the consequent increase in dis-
order. This process cannot go on forever, though,
After the size of the extra dimensions becomes

8 „-&(R-2h.)g „=-StrGT„, (2)

where the energy-momentum tensor is assumed
to be of the perfect-fluid form

T.„=(p+p)u u„-pr .. (3)

The integrability condition V T "=0 implies a
constraint among the functions p(t), p(t), tt(t),
and a(t):

p+ (p+ p)(3A/Ji +n,i/a) = 0 (4)

where p =— dp/dt, etc. , and the pressure p is given
in terms of p by an equation of state [p =0 for
"dust, "

p =(D —1) 'p for "radiation, "etc. J.
Let us study now what are the effects of having

n, dimensions contracting. We shall assume that

smaller than a critical size to be specified later,
entropy production virtually stops and the expan-
sion proceeds in the standard adiabatic way.

The entropy thus produced could eventually, de-
pending upon the details of the solution, be as big
as necessary to solve the horizon and flatness
problems, providing hypothetical alternatives to
the usual inflationary scenario. 4 Another pos-
sibility is that this entropy spreads out as uni-
form background radiation.

We will assume, for simplicity, that the metric
has the Bianchi type-I form

ds' = dt' —g'6. dx'dx' -A.'5,dy'dy'

where i,j = 1, 2, 3 (the ordinary space dimensions)
and a, h =4, ... , D (the compact dimensions). ' The
compact dimensions are "periodic" in the sense
of being restricted to —1. &y, &4, where L, is the
constant fixing the scale of length in the extra di-
mensions. Here, R(t) and A(t) are functions of
time only, to be determined from Einstein's equa-
tions (m, n = 0, ... , D)
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this contraction happens in an adiabatic way, i.e.,
that

vs =0,

where S~, the entropy D-vector, is given in
terms of the mean four-velocity by SD =88 u .
The entropy density will then obey the relation

8~'A "~ = X'= const,

which implies that the total entropy in a unit of
comoving volume is constant.

Let us first assume that the D-dimensional uni-
verse is uniformly filled with radiation (a similar
analysis can be done for dust or other matter).
Since the momenta associated with the extra di-
mensions will take on only discrete values, q,.
=2am, /AL, then the entropy density for this D-
dimensional photon gas will be (in the local in-
ertial frame)

8~(t) =—;„0Q fd'pILfDlnf~ —(1+fD)ln(1+f~)j,
m

where fD is Planck s distribution function, which in this frame reads

f~ = (expg[P'+ (2v/LA)'m']'t' f —1)

In order to study the thermal evolution of the radiation gas, it is useful to consider two extreme pe-
riods: epoch I, when the extra dimensions are of an enormous size, so that AL»I3, and epoch II, in
which AL «P.

At epoch I, the discrete sum can be replaced by an integral, so that

u) c p-nc ',
D D

where

P(n. +2)!p(n. +4)
D +nc i22n~+21'((n + 3/2) )

For a radiation-dominated universe (p-p '"'"c' '""c'A "~"'"~' """c')the D-dimensional adiabaticity
condition implies

T( & -g -»(~+~C&/ -~C&~+tIC& (10)

All the intrinsic D-dimensional quantities must now be related to some four-dimensional ones. It
should be stressed that this is an artificial procedure during epoch I, and it is only justified by the
fact that we know that after some time (namely, during epoch II) the four-dimensional universe will be
singled out.

The D-dimensional distribution function is normalized via the particle density; i.e., the number of
particles in a D —1 dimensional hypersurface U„„is given by

C

N(V„„)= JfD(p, q, t)R'd'xA "~ d"~y 8'd'pA "~ d".q.

This number can also be obtained in a formal way using V„„=V„&V„where V„is a three-dimen-
C

sional hypersurface and U, an n, -dimensional one. For an observer not sensitive to the extra dimen-
sions, the probability of finding a particle in V„with momentum between p and p+dp at time t is in-
tuitively given by integrating out f~ over the extra degrees of freedom, namely y and q. In fact, the
equivalent four-dimensional distribution function f,(p, t) can be defined in a natural way by

)
ffDA & d &q le) d ~q

4 & fAn dnzq V(q)

so that

u(V„„) X(V„„„)
A". V(q)fA"~d" y A" V(q)A" V(y)

(12)

Both V(q) and V(y) are formally infinite, reflecting the fact that we have normalized in D dimensions
to a finite quantity„They will eventually disappear though in all ratios of physical quantities computed
with f,. In the second epoch (when A -0), we recover the natural result

f4(p t) =fD(p A = 0 t).
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Explicit computation of f, in epoch I, using (12) and (8) gives

y(~) -).+ {n -))/22 (nc+1)/2A -nc p
()-n )/2(~p) (nc+()/2 Q n) (& nc)/ 2g (p)ngp)

m=l

whose infrared limit is

(13)

and which in the ultraviolet behaves as

f p'(q) )2nc/2))'nc A -nc
p -nc/2(gp)nc

These limit behaviors are similar to the ones for the four-dimensional Planek function; the main dif-
ferences are that the zero in the ultraviolet gets some power corrections, and that the infrared be-
havior is regulated by an effective cutoff.

In view of the complicated exact expression for f„it seems only natural to represent its physical
effects by a Planck function with an effective temperature determined in such a way that the mean en-
ergy of this fictitious Planck gas is the same as the one stemming from our f„i.e.,

2nc+2 ( 4b + g 1/4
7 ' g(, -l)/2 +~".+4j I ".+""A-.,/ T(,+4)/4

3V,
' '

q(4)

The corresponding effective four-dimensional entropy satisfies

(
c n 3'{ z& 3nc/(3+n ) A - (Sn /4) (2nc+7)/(n +3) (17)

This is the most important result of our paper. It implies that the whole process produces entropy in
the four-dimensional world, which would be considerable if A decreases very rapidly, and/or R grows
very fast, and/or the number of extra dimensions is quite large.

This approximation (A-~, epoch I) is valid from the "big bang" on, up to a critical time, to be de-
termined by the condition

P g 3/(3+n )An /(3+nc)

At epoch II only the m =0 mode in the sum contributes, so that

S "= ' (n, + 2)S ' (LA) "c.

This implies that; from this critical time on, the expansion is adiabatic in the four-dimensional sense
also ~

21."c

c
(2O)

so that all the effects of the extra dimensions on the four-dimensional physics have disappeared.
It is not difficult to find solutions with the desired general characteristics. Starting from Einstein s

equations, which in our ease reduce to

n
+ 3n ——+~ (n —1) — = A. + 8)TGp,' RA
R' AA. A n A

2 —+ — +2n ——+n —+~ (n —1) — = A. —87(GP
A; g 'gA 'A 2 ' A (21)

(n, —1)(n, -2) AA A(n, —1) —+ ' ' — +3(n —1) ——+3 —+3 — = A —8)(GpA 2 A ' AA R 8
it is very easy to cheek that when n, = 1 a vacuum
solution exists with zero cosmological constant,
and such that h', —t' '-A ' (this, however, is too
slow a rate to be of any help with the horizon and
flatness problems).

For both dust (p =0) and radiation in the large-

n, limit there is a solution of the type

[~ mnc/2 (4pGp ))/2~ j-2/mnc (22)
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The behavior A - 8 ™ is not strictly compatible
with the compactification of the extra dimensions,
as this Ansatz is valid only during epoch I. On
the other hand, in epoch II the extra dimensions
essentially decouple, so that the universe is well
described by the standard four-dimensional mod-
el. A really satisfactory solution should i~cor-
porate in an essential way the fact that G„ is a

C

compact manifold, even during epoch I.
In an universe evolving in accordance with a

scenario of this type the amount of entropy pro-
duced can be as large as a(S,&') = 10" (which is
the amount necessary to solve the horizon and
flatness problems, see Guth') and the Hubble con-
stant 6, can be fixed to be equal to the actual ob-
served value of 50 km/sec Mpc -10 "sec '. Of
course this implies neglect of the duration of
epoch II, which is very short in this model. (The
universe is then much older than 10"years!) It
cannot be taken seriously as representing our
universe though, because, for example, it pre-
dicts too large a variation with time of the fine-
structure constant by many orders of magnitude
(it is known observationally to be h & 10 '4 sec ',
see Dyson'). Nevertheless, we think that its ex-
istence makes it plausible that a solution of Ein-
stein's equations will exist with all the desired
characteristic s.

We want to stress, finally, that the fact that the
effective coupling constants in four dimensions
cannot have too large a variation with time is a
major constraint in all Kaluza-Klein cosmologies.
It implies that after a period of more or less
quick contraction the extra dimensions must re-
main almost stationary —-with a very small radius,
presumably smaller than 10"m~ ' (see Ref. 1)

until now. It is amusing to remark, in this con-
nection, that it is not possible for either vacuum,
dust, or radiation, within the context of the given
Ansatz (1) for the metric, to build a model in

which the ordinary dimensions, independently of
their number, expand and the extra ones remain
strictly stationary. (It seems possible to have A
small in our vicinity —for z & 1000, say—in such
a way that h is below the experimental limit; but
dust or radiation models in which A. =0 but A 0
must necessarily have a more complicated topol-
ogy than the one assumed here. )

In conclusion, we have suggested a cosmologi-

cal scenario for the production of large amounts
of entropy in an universe undergoing dynamical
compactification of its extra dimensions. The
possibility of solving the horizon and flatness
problems in this type of scenario is of course
very exciting. Further research on these topics
is currently under way.
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„(nc+&)/& @(n + 3)
T eff (3)

y /""c/3Tt "c+3~/3

r(n„+3)
r(ls, + 3)/2)

If the original distribution function, f4, is not very far
from equilibrium all the possible effective tempera-
tures, although different, should give roughly equiv-
alent physical results. That this is the case for our

f4 can be easily checked by a direct comparison.
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