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Evidence for Power-Law Spin-Correlation Decay from Muon Spin Relaxation
in AgMn Spin-Glass
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Muon spin relaxation measurements have been carried out below the "glass" tempera-
ture pg in AgMn spin-glasses. The muon spin-lattice relaxation rate varies with field
H as H ' for 0.30 ~ T/T & 0.66. This suggests that impurity-spin correlations
decay with time as t ~, v=0.54+ 0.05 in contrast to the more usual exponential decay.
The present data therefore agree quantitatively with the prediction v = 2 of mean-field
dynamic theories.

PACS numbers: 75.20.Hr, 75.30.Hx, 76.30.Fc

There is a great deal of experimental and the-
oretical interest in the effects of random ex-
change interactions upon the dynamic properties
of magnetic systems. ' In simple models of non-
random magnetic systems, the spin autocorrela-
tion function typically exhibits decay with an ex-
ponential time dependence outside the critical re-
gion. ' By contrast, the recent calculations of
Sompolinsky and Zippelius' for a disordered (spin-
glass) system show that the correlation function
decays algebraically in time, in agreement with
earlier Monte Carlo simulations. ' It is therefore
of considerable interest to try to distinguish ex-
perimentally the effects of disorder upon the spin
dynamics.

The theoretical approach to spin-glass dynamics
has been varied. Harmonic excitations (spin
waves in nonrandom magnets) have been studied
theoretically in more or less realistic models, '
with some success in explaining the magnetic
specific heat. Other theories, "which use Lan-
gevin equations to represent the dynamics of the
Edwards-Anderson model, ' approach the problem
from a more phenomenological viewpoint. The
theory of Sompolinsky and Zippelius is a mean-
field theory of the latter kind, in which both slow
and rapid spin-glass dynamics are treated con-
sistently. This theory identifies time-dependent
order parameters (which vanish over arbitrarily
long times), and also predicts short-time prop-
erties such as spin response and correlation func-
tions. A remarkable property of the response
function is that it vanishes algebraically with fre-
quency &u (as ~", with v ~z for dynamic stability)
for T & T,. The fluctuation-dissipation theorem

then gives a noise spectrum (Fourier transform
of the spin correlation function) which diverges
at low frequencies as +" ', yielding spin correla-
tions which decay in time as t . Earlier mean-
field dynamic theories' also gave algebraic de-
cays, with v=&, but used low-order approxima-
tions and a static (therefore suspect) definition
of the order parameter.

This Letter reports the results of longitudinal-
field muon spin relaxation (pSR) experiments in
the spin-glass ~Mn, which give evidence for the
algebraic correlation decay predicted by the
mean-field dynamic theories for disordered sys-
tems. Information from other experimental tech-
niques is scanty below T„although neturon-scat-
tering, ' ESR,' and /SR"" experiments have
studied fluctuations as T, is approached from
above. The recent zero-field NMR experiments
of Alloul, Murayama, and Chapellier" in the spin-
glass CuMn bear directly on the form of the de-
cay well below T„however, and will be required
to interpret the pSR data.

Our results may be summarized as follows:
(1) The positive-muon (p') spin-lattice relaxa-

tion rate A.
~~

varies as it' ', with v=0.54+0.05,
over a wide range of fields, for 0.3 & T/T, & 0.7,
and for several Mn concentrations. Here H is an
effective field as explained below. On general
grounds we expect A.

~~
~ J(&u„), where J(&u) is the

noise spectrum of fluctuating dipolar fields pro-
duced at p.

' sites by Mn spins and cu„ is the p,
'

Larmor frequency. Thus the field dependence of
A.

~~
gives the functional form of J(~), if the ex-

ternal field B~~ does not affect the functional form
of 4(~) directly. The zero-field NMR results"
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are consistent with the same functional form of
J(~) obtained from the field dependence of X~~, at
least for T «T„and therefore support this con-
dition. Our data provide the first experimental
evidence, to our knowledge, that spin correlations
decay algebraically in spin-glasses below T .
The observed value of v at T «T is within ex-
perimental error of that obtained from dynamic
theories. "

(2) The field dependence of A.
~~

for T/T, =0.9 is
approximately kf "', which yields v =&. This
result is not in agreement with the dynamic the-
ories, which predict v(T ) =vl. It may be, how-
ever, that J(~), like the low-field ac susceptibil-
ity, ' is directly affected by the applied field near
T„where corroborating zero-field NMR data are
not available.

(3) A scaling law of the form

&
i~

= ~'f (7'/7'„&/7;)/&„
where x is the Mn concentration and f (u, v) is a
dimensionless function, is obeyed. This form is
expected for dilute spin-glasses, where the di-
polar coupling (which enters the relaxation rate
as a matrix element squared) scales as x, and
spin-glass energies (and frequencies) scale as
T ." Dimensional analysis then yields Eq. (1).

Ag, „Mn„alloys, with x=1.6, 3, and 6 at. %,
were prepared by arc melting, followed by a
homogenizing anneal and quenching. A sharp
cusp in the ac susceptibility was observed at the
glass temperature T, of each sample. Details
of sample characterization will appear in a forth-
corning article. pSR experiments were carried
out at the Clinton P. Anderson Meson Physics
Facility (LAMPF) at Los Alamos National Lab-
oratory. It has been determined" that implanted
p.
' are essentially immobile in silver below -200

K and occupy interstitial sites at random, "and
that the coupling between Mn and p' spins is pre-
dominantly dipolar. " Data were taken for 0.15
kOe -Bll &5 kOe, and 2 K ~T ~ 1,.

In addition to the applied field h'~~, the local di-
polar fields contribute to the total static field seen
by the muon. When averaged over all p' sites,
the local field is Lorentzian" with a width 4 which
is known' from zero-field I SR measurements.
[4 =230 Oe for ~Mn(1. 6 at.%).] In order to ap-
proximate the effects of ~, we take the effective
field H at the muon site to be (B~~'+ A')' '. Note
that the meaured 6 depends upon temperature, "
analogous to the magnetization in an ordered mag-
net.

The data yield an experimental p' spin-lattice

relaxation function G„(t).""The form of this
function in spin-glasses is not obvious, because
of random inhomogeneity in the dipolar coupling
and, possibly, in the noise spectrum J(~) itself.
In addition, the statistical properties of the Mn-
spin fluctuations and the resulting fluctuations
of the p' dipolar field are not necessarily the
same. On very general grounds, however, "the
rate 8',- of transitions between spin states of a
p.
' at the ith site is

W, =[~a,,(i)]'J, ((u„,), (2)

where &ua;p(i)/y„ is the dipolar field at the ith p'
site (y„ is the p.

' gyromagnetic ratio), Aa&„, is
the p.

' Zeeman splitting, and J;.(~) is the noise
spectrum of the fluctuating field. The effects of
inhomogeneity in ~a;z(i) and possible inhomogen-
eity in J(~) remain, however, and are difficult
to estimate, particularly for spatially correlated
Mn-spin fluctuations.

The problem of a random fluctuating field also
arises in p' and nuclear spin-lattice relaxation
in dilute alloys containing paramagnetic impur-
ities, ""where an average over environments of
p' or nuclear spins yieMs the "root" exponential
form

G, (t) exp(- ((W,. ) t)'~'j.

Here (W,.) is an average of W, over the spatial
disorder. We have chosen to fit our data by the
root-exponential form, with A.

~~

= (W, ), to take
crude account of the random dipolar field. This
typically gives fits comparable to or better than
fits with the exponential function exp(- A. ~~t).

We believe that uncertainty in the functional
form of G,~(t) does not invalidate our basic con-
clusions, because the time scale of the relaxa-
tion is in any case set by (W,. ) '. Nevertheless,
such uncertainty could introduce an unknown sys-
tematic error into the value of v.

Complex short-time behavior of G~~(t), due to
static components of the Ij' dipolar fields, sets
in for kfll & ~. This problem was dealt with in the
fitting of G ~~(t) by excluding data from the short-
tlllle region t & (ypE) q

so 'tllat only spin-lattice
relaxation processes contribute to the fitted data.

Figure 1 gives scaled isotherms A.
~, (B) for a

number of temperatures below T,. Scaling be-
havior [Eq. (1)] is quite well obeyed. These data
were fitted by two functional forms: A Lorentz-
ian distribution (corresponding to an exponential
correlation function) and a power law, a„a:&" '.
The data for 0.3 &T/T &0.66 show a nearly tem-
perature-independent value for v: v= 0.54+0.05.
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TABLE I. Values of the exponent v obtained from
power-law fits to the field dependence of A,

II (see Fig.
1). Values of reduced y for the power-law fits [(g ) ~]p1
and for fits by a Lorentzian functional form [(p )1 pp

are also shown.
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For each temperature the power-law fit gave a
smaller value of reduced y' than the Lorentzian
form (Table I). The confidence level (P) arising
from fits to all of the data below T/T, =0.66 (al-
lowing separate values of v at each temperature)
is P=0.8 for.the power law and 5'=0.015 for the
I orentzian forms. Here P is defined" as the
probability of obtaining a given y' from the cor-
rect fitting function. Thus the ehoiee of a power
law is statistically significant. At T =0.9T„we
find a smaller value, v=0. 24+0.02. Here g' for
the power-law fit is high (5'=0.01), but g' for the
Lorentzian fit is so much higher that a power law
clearly gives a much better approximation to the
data.

Sensitivity to the assumed form of G~~(t) was
tested by fitting the data with an exponential func-
tion. This procedure yielded relaxation rates
(not shown) which also exhibited a power-law field
dependence, with somewhat larger values of v

FIG. 1. Scaled isotherms of p+ spin-lattice relaxation
rate A,

II
vs effective longitudinal field H, for tempera-

tures below T~ in Ag, „Mn„spin-glasses. Open sym-
bols: x = 1.6 at.%. Half-filled symbols: x = 3 at.%.
Filled symbols: x = 6 at.%. Least-squares fits with a
power law are shown for each scaled temperature T/
T~. Scaled widths 6/T~ of the p+ dipolar field distri-
butions for the various Mn concentrations are shown

by arrows on the horizontal axis.

than obtained from the root-exponential fits. The
scaling behavior of these results was poor, how-
ever, which suggests that a root-exponential form
for G~~(t) is a better choice than an exponential
for m.

pSR data alone cannot determine whether the
applied field affects J(&u) directly. Corroborating
evidence for no direct effect of field comes from
the zero-field NMR spin-lattice relaxation meas-
urements of Alloul, Murayama, and Chapellier"
in CscMn spin-glasses. The hyperfine eouplings
between Mn spins and "Cu nuclei in near-neigh-
bor shells around Mn sites could be obtained from
the NMR frequencies ~„,. Then the (transverse)
NMR spin-lattice relaxation rate I/F, is given by

1/T, =(Khf)' ( hf) ~ (&u &)"", (4)

where the last proportionality follows from the
assumed form of j(&u). Although the data are only
available for two near-neighbor NMR lines, "a
power law fits the above dependence of 1/T, on
(ro hf with v = 0.4 +0.2. This is in reasonable agree-
ment with the I.SR results given above. We con-
clude that the data are consistent with a field-
independent J(v), noting, however, that the NMR
data are available only for T «T, . A field-inde-
pendent J(~) is expected, after some assumptions,
from the theory of Sompolinsky and Zippelius. '

The power-law fit to the data for T/T, =0.92
yields a considerably smaller value of v than
found at lower temperatures. (It has been noted
previously" that A. II is inversely proportional to
field at T= T,.) We cannot conclude that the pre-
diction v(T, ) =& of the dynamic theories is incor-
rect, however, because the field may affect J(~)
directly. Neutron spin-echo results' near T, are
consistent with our pSR results, but do not con-
strain the value of v enough to indicate a contra-
diction with theory.

The present results eall for further theoretical
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work. A calculation of G~, (t) which includes ef-
fects of spatial inhomogeneity and correlation in
all relevant quantities is clearly required. The
most fundamental question, perhaps, is whether
algebraic correlation decays can be obtained from
more realistic models.
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