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Kaluza-Klein Monopole
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By adding the trivial term -dt one can convert the four-dimensional (positive-definite)
Newman-Unti-Tamburino line element into a static solution of the Ave-dimensional vac-
cuum Einstein equations. Interpreted a la Kaluza and Klein, the solution describes a
monopole with a charge-to-mass ratio of 42 in rationalized Planck units. Although it is
a perfectly regular five-geometry it appears singular from a four-dimensional perspec-
tive.

PACS numbers: 12.10.-g, 04.20.Jb, 04.60.+ n, 14.80.Hv

Present-day physics exhibits two independent
kinds of symmetries: the geometrical symme-
tries expressing the interchangeability of the
points of space-time, and the internal symme-
tries expressing an interchangeability among
certain of the material structures which can oc-
cur at a single space-time point. The aim of the
so-called Kaluza-Klein theories is to unify these
types of symmetry by hypothesizing that the ap-
parently internal symmetries are in reality also
geometrical. One posits the existence of extra
(but very compact) dimensions of space-time and
interprets gauge transformations as generalized
rotations taking place within these extra dimen-
sions,

In the prototype Kaluza-Klein theory' the extra,
dimension was no more than a mathematical arti-
fice since the internal metric (that of a circle)
was fixed a priori, and not to be varied in the
action principle. When this restriction is dropped
excitations of the internal geometry become pos-
sible, and the extra dimensions can have observa-
ble effects.

Nevertheless a cynic might still choose to re-
gard the use of such dimensions as a trick for
producing interesting four-Lagrangians. Short
of direct exploration of the "internal" geometry,
the best antidote to such cynicism might be the
discovery of a particle whose hypothesized struc-
ture does not admit of interpretation in terms
of four-dimensional fields. In fact such struc-
tures exist, and we will see below that one which
occurs in the purely electromagnetic theory can
be interpreted as a magnetic monopole carrying
the Dirac charge.

The Lagrangian For the .—Abelian [U(1)]
Kaluza-Klein theory, space-time is a five-mani-
fold 'M with metric g» of signature -++++.
To descend to four dimensions one introduces a
vector field K" whose orbits are circles (exp2sK

where y» is a degenerate metric of signature
0-+++ such that y»K =0. The one-form A is
well defined wherever K ~ 0 and related to K"by
A„=K„/A. =g»Ks/A. , where A. =(g»K"K )' '
is the radius of the "internal circle. "

The effective four-manifold 4M is now the quo-
tient of 'M with respect to the action of K: Each
circular orbit of K becomes a single point in 4M.
Because of the assumption that K is a symmetry,
nothing really depends on the fifth dimension;
and g» is equivalent to a set of three distinct
fields defined on 4M, a scalar, a tensor, and a
vector, deriving respectively from A, y», and
A. ~. At spatial infinity A. will approach a constant
value X, and we take the four-scalar field to be

(u = ——,
'

In(A. /h ) . (2)

To define the four-metric g„, (using Greek in-
dices for 'M) notice that there is a unique metric

y&, whose pullback to 'M is y» and put

g„„=(h/Z )y„,=e ' y„, .
In a coordinate system with x' parametrizing the
internal dimension and K"= (0, 0, 0, 0, 1) the com-
ponents of g» are independent of x' and our de-
finitions so far read A. = (g»)'I', g„,= (A/h. ) Ig„,
-g»g„,/g»]. Finally we will need the vector po-
tential A„—= A„/X. Unlike ~ and g„„A„is gauge
dependent —it changes under coordinate trans-
formations x'-x'+ 6(x")—but of course

F~„——(curlA )p „——Bp A, —&„A
p

is not, and can be defined invariantly as the two-
form on ~M whose pullback to sM is F=—curl(A/h).

With these definitions the five-Lagrangian

= 1) and assumes that, at least to a first approx-
imation, K is a Killing vector for g». The five-
metric then decomposes as

z&p = r&J-. +&&&g,
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-et + 1+— 8 + 0 + +0
p p+m

where r —= x +y +8 +5v and

p'=- r'+m'.

(7)

(8)

An equivalent expression in terms of Euler angles
for the three-sphere can be obtained by substitut-
ing'

o, = -&g -cos8 &y,

o 2+a 2= &82+sin288y —= 802
X

(2h) '('8)(-'g)'i' leads to a four-action

s=s. +~-' f(-,'B -3
I
~~I'

—V &u
e-6"A„/8F. „,E~)dV,

where R is the scalar curvature of g„„(with re-
spect to which all contractions are done), and
x=h/2&11. plays the role of the four-dimensional
gravitational constant SING, The integral S at
spatial infinity would be needed in deducing the
total energy from first principles, but we may
neglect it for what follows.

A monopole solution. -evince the five-Lagrang-
ian is just the scalar curvature the five-dimen-
sional field equations are just 'R» =0. Conse-
quently any signature-(++++) solution g» of
four-gravity can be extended to a static Kaluza-
Klein solution, g», simply by setting pop I,
g„=0 (where a, h =1, 2, 3, 5). For example the
flat metric derived from g,~= 4„by periodically
identifying x'=x'+2m gives rise in this way to
the Kaluza-Klein equivalent of Minkowski space-
time.

Applying this procedure to the so-called Taub-
Newman-Unti- Tamburino (NUT) instanton yields
a five-metric which can be written conven iently'
in terms of Cartesian coordinates t, x, y, z, zv

for R'. In terms of q'=x'+y +z'+so', p= 2lnq,
and o, = 2q 2(zdw -wdz +xdp -pdx) (with cyclic
permutations for o„and s, ), the full Kaluza-
Klein metric is

ds2= dt2+ U idp2

+4m'Uo. '+ (p' —m')(o„'+ o, '), (6)

where U= (p -m)/(p+ m). In (6) there is an ap-
parent singularity at p=m. However, a simple
radial coordinate transformation and redefinition
of p brings ds' to a form valid for all t, x, y, z, zv,
and in particular shows that (for any m )0) the
topology of the solution is simply R'. The metric
g» thereby assumes the form

+(r/p)(1+m/p)ar'+(p m)r &—n'.
From (2) and (11) we see that

(u = —,
' ln[(p+m)/r].

(12)

(13)

Finally crul(A A/)= —,
'

cur. lo, = —,'(sin8 &8 ~ ay)
which translates immediately to 4M to give for
the electromagnetic field tensor

I' = —,'sin0 ~6I n, ~y. (14)

Observe that g& „~, and E all become singu-
lar at r = 0, as could have been anticipated from
the breakdown there of the local product struc-
ture of 'M.

Mass and charges of the solution. —To justify
calling this solution a monopole let us compute
its electromagnetic charges. The total magnetic
flux through any sphere about the origin is, from
(14),

f B ~ ds= f ,'E„„dZ"'= J —,'sin—8d8dcji=2m,

as could have been inferred directly from the
fact that the NUT metric has one twist' when re-
garded as a U(1) bundle over 4M. However, this

with 0 - 8 (v and with p and g having periods 2&

and 4~, respectively. ' That (7) is regular at r=0
may not be immediately recognizable, but direct
computation reveals that near r = 0 it reduces to
-Bt'+4(ew'+ ax'+ Q'+ &z'), whose smoothness
is manifest.

Equation (7) defines the five-dimensional soli-
ton solution. It is manifestly static, already in
the form (1) with A = 2mr/(p + m) o„and in t, r,
8, y, g coordinates clearly admits E = 2 &/&g as
Killing vector with period 2v (i.e., P/2 can be
used to parametrize the internal circles' ). It
follows that

x = 4mr/(p+ m) .
For v» m the metric approaches —~t + B~
+~'ag'+4m 0, ', which locally looks like a
"Kaluza-Klein Minkowski space" with internal
radius 8rm; in particular A. =4m.

Proceeding from these formulas it is easy to
pass to the four-description of the metric. The
quotient manifold 4M is naturally coordinatized
by t, r, 8, y and is thus topologically R4. The true
space-time 'M is everywhere a fiber bundle over
'M except at the origin r=0, where A. =0 and
the U(1) fiber shrinks to a point. From (10) y„,
is -et' (+1 m+/p)' Br'+r' &0', whence the quo-
tient metric g„„of (3) is [with the help of (8)]

-[(p —m)/r] et '
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flux is not immediately the magnetic charge be-
cause the coefficient of E„„E""in (5) differs
from the customary --,', the correctly normal-
ized magnetic charge' being rather Q~ = 2wA „
x (2~) ' ' . In units such that k = 2m'. „=1 (note,
Sg1 t), which I designate "KK units, " this be-
comes Q~ = 1/v 2.

As for the total erectric flux, $E dS, it van-
ishes because the absence of &t in (14) means
that E itself vanishes. Notice incidentally that
the Dirac condition eQ~/h =integer (where k
=2vh) is verified with n = 1 since the unit of elec-
tric charge is e =(2~)' '8/X

The monopole's scalar charge is somewhat
easier to compute. According to (13) a.nd (8) u
= m/2r at large radii and is therefore the field
of a source of strength 2vm =(~/2)a„. Again,
however, u& should be rescaled by (6/w)' ' to
bring its contribution to (5) to the usual form.
The resulting scalar charge is Q~ = (3/2~)' 'vX„
or (&)' ' in KK units.

Finally, what about the mass? With the def-
initions of this paper we can deduce the total
energy M unambiguously' from the behavior of
g„as r-~. From (12) -g„-1-m/r, whence
M =4wm/A. „=vA. /K or —,

' in KK units. To sum-
marize, then, the mass and charges in KK units
arelo

1
Q (& )1/2 Q (+ )1/2

Incidentally the value of Q~ implies that bound

states uniting the monopole with charge e excita-
tions of g» would be fermions. "

Discussio~, —In no four-dimensional theory
with a scaling symmetry can there be a stationary
solution of nonzero energy. ' How then do the
Kaluza-Klein equations admit a solution (7) which
is not only stationary, but everywhere regular
and without event horizon T Two features seem
essential. The inescapable five-dimensionality
of the metric prevents any four -the orems from
being applied directly; and the fixed value of the
internal radius A. in effect introduces a funda-
mental length which then prevents the five-dimen-
sional analog theorem from applying. This seems
quite similar to the way in which a boundary con-
dition of the Higgs field allows monopole solu-
tions to persist in the Prasad-Sommerfield limit,
even though the scale-invariance-breaking po-
tential itself goes to zero. Here, however, there
is no Higgs field and no symmetry breaking.

In the same way as we used the NUT metric,
each of the known ALF instantons could be used
to construct a static Kaluza-Klein solution. For

example the multi- Taub-NUT solutions become
multimonopole solutions and the Schwarzschild
instanton of "mass" M yields a neutral solution
of total energy M/2 which seems to describe a
delicately balanced "bubble" of the type discussed
by Witten. " By a slight generalization of the
present, procedures (to allow g» to vary) the
Israel-Wilson solutions may also turn into five-
dimensional vacuum solutions.

Of course all these solutions are physically
unrealistic insofar as U(1) is not the gauge group
realized in nature. '4 But in order that there be
analogs it may suffice that the "correct" G con-
tain U(1) as a subgroup, which is virtually cer-
tain.

In a way it is surprising that so many seeming-
ly distinct particlelike structures can exist in
wha. t seem to be fundamental theories. " One
might wish that at least some of these possibili-
ties could be, if not excluded, then at least re-
duced to some of the others. In the context of
the present theory, for example, there is no

reason why the charge carried by the monopole
should be labeled "magnetic. " It might equally
well be deemed "electric" and A „treated as a
potential for the dual field *E„„.With this re-
identification —or even without it—it becomes
important to understand how the effective dual

potential needed to express the mutual interac-
tion of such monopoles can arise. Once this is
done, '6 it may appear that some or all of what
today seem to be elementary structures (includ-
ing space-time itself) arise in a similar way
from "sub-Planck-scale" quantum processes.

For interesting comments I would like to thank
those who attended the Institute for Advanced
Study-Princeton University relativity seminar
at which I first presented this idea, including
especially Malcolm Perry. I would also like to
thank Paul Green and other University of Mary-
land colleagues for suggestions.
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