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An exact equivalence is established between the directed-site animals-enumeration
(DSAK) problem in d dimensions and a crystal-growth model defined on the same lattice.
In special cases, the latter reduces to the calculation of the free energy of a {d-1)-di-
mensional lattice gas with extended hard cores. The author solves a DSAE problem with

d = 3 exactly by using its equivalence to the hard-hexagon problem, and shows that the
exponent 6 = ~. A new and simpler solution to the DSAE problem on the square and tri-

6
'

angular lattices is given.

PACS numbers: 05.50.+q, 02.10.+w, 61.50.Cj, 64.70.Kb

The directed-site animals-enumeriation (DSAE)
problem is an elegant combinatorial formulation
of a problem with appl. ications in many different
fields, and has been discussed in several papers
recently. In one dimension the problem is trivi-
al. The d = 2 problem can be solved exact1.y with
use of its equivalence to a lattice-gas model
studied ear1, ier by Verhagen. ' In this Letter, I
sol.ve exactly a three-dimensional DSAE problem
on a simple-cubic lattice with nearest-neighbor
(nn) and next-nearest-neighbor (nnn) connections
by showing its equivalence to the hard-hexagon
gas model solved recently by Baxter. ' I show
that the exponent ~ and the "correction-to-scal-
ing" exponent are both —,

' in this case.
I establish a more general equivalence between

the d-dimensional DSAE problem and the ca1,cu-
lation of average density in a crystal-growth
model. (CGM) defined on the same lattice. In
special. cases (if the conditional probabilities of
the CGM satisfy the detailed balance condition),
the ca1.cul.ation of average density in the CGM re-
duces to that for a (d —1)-dimensional lattice gas
with hard-core interactions. Using these equiva-
lences, I also obtain a new and simpler solution
to the DSAE probl. em on the square and triangul. ar
1.attices.

Consider a d-dimensionaL lattice in which all.
bonds are directed, and there are no directed
loops (Fig. 1). A site j will be said to be a suc-
cessor of sitei iff there exists a bond fromm to
j. For a set of sites C, the set of successor
sites will be denoted by S(C). The set of sites
at 1.east one of whose successors is in C wil1. be
denoted by S '(C). A directed animal 8 with a
source C is a configuration of occupied sites such
that all the source sites are in 8, and a site iK C
is in 6 only if at least one of the sites in S '(i)
is al.so in 8. This is the directed anima1. s con-
straint. The number of sites in 9 will be denoted

by I +I.
We define4 an integer-vat. ued time coordinate

t(i) for each site i of the lattice, such that for
any two sites i and j, if j~S(i), then t(j) ~ t(i)+ l.
It follows that allowed configurations of occupied
sites at the surface t = T depend only on the con-
figuration of occupied sites at earlier times t
c T —1. Consider first, for simplicity, the case
when they depend onl.y on the configuration at the
surface t= T-1 [Figs. 1(a) and l(b)]. I.et Cbe a
set of occupied sites on a constant-t hypersur-
face. We define the generating functions

A, (x) = g x"A, (n),

where Ac(n) is the number of distinct anima, ls

(c)

(b)

(~)
FIQ. 1. Unit cells of the directed lattices discussed

in text. (a) The d-dimensional simple-hypercubical
lattice for d= 3. (b) The body-centered hypercubical
lattice for d = 3. (c) The triangular lattice. {d) The
simple-cubic lattice with nearest-neighbor and next-
nearest neighbor bonds. Bonds from the site {0,0, 0)
have end points at (0, 0, 1), (1,0, 0), (0, 1,0), (1,1,0),
(1,0, 1), and (0, 1,1) .
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with size n having source C.
The Markovian property of directed animals

impl. ies that the generating functions satisfy the
recursion relations

A c (x) = x i ~ [1+Q A D (x)], (2)

where the summation over D extends over all the
proper subsets of S(C). Note that the time coor-
dinate of sites in B is greater by 1 than that of C.
It is easy to general. ize Eq. (2) to the case when
the allowed configurations of occupied sites at
t = T depend on the configuration of sites at t (T
—2 also [Figs. 1(c) and 1(d)]. These recursion
equations form the Bogol.iubov-Born-Green-
Kirkwood- Yvon heirarchy of equations for the
DSAE probl. em. Iteration of these recursions is
a fairly efficient way of generating animal num-
bers for various lattices. ' In the following, we
use these to establish the equivalence between
DSAE and CGM&

The CGM is def ined' as fol, lows: We consider
the same l.attice as in the DSAE problem, and
define a new "time coordinate*' ~(i) = —t(i). In
this model, at time 7 =0, all sites with 7 ) 0 are
unoccupied and some of the sites with ~ &0 are
occupied. At time ~ =T, particles from an ex-
ternal reservoir come and occupy some of the
sites on the surface ~ = T. The probability that
a particular site i is occupied or stays unoccu-
pied depends only on the configuration of sites in
S(i), and is independent of the occupancy of other
sites. The state of sites on the surface ~ = n does
not change at any later time. The DSAE corre-
sponds to a particularly simple choice of the
conditional probability of occupation of i, given
the occupancy of sites in S(i): It is 0 if any of
the sites in S(i) is occupied; and it is p, if ail.
sites in S(i) are unoccupied.

Let P(C) denote the probabil. ity that al.l sites
in the set C lying on a constant-~ hypersurface
are occupied. [I assume that 7 is so large that
P(C) is independent of ~.] This is equal. to pi~ i

mul. tipiied by the probability that all sites in S(C)
are unoccupied. With use of the incl.usion-ex-
clusion principle

P(C) =P' [1+2(-1) P(I )], (3)

where the summation over D extends over all. the
proper subsets of S(C). Comparing with Eq. (2)
we see that

&,( =-p)=(-1)' P(C)-

Thus the generating function of directed animals

starting from a. singl. e point source is determined
by the average density of occupied sites in the
CGM probl. em. The equival. ence is easil. y general-
ized to lattices with next-nearest-neighbor bonds,
etc. [Fig. 1(c)].

The d-dimensional CGM may alternatively be
viewed as describing the stochastic time develop-
ment of a (d —l)-dimensional, lattice gas. The
(d —1)-dimensional. lattice consists of r interpen-
etrating sublattices L»L29 ~ ~ 9L7 each of which
is isomorphic to a constant-& hyperplane of the
d-dimensional lattice (~= 2 or 3 in the cases dis-
cussed below). The configuration of occupied
sites on the plane 7 =ms+i of the CGM defines
the configuration on the sub1.attice L,- at times ~
=me+i+j, where m is any integer and 0(j & x.
At times 7 =ms+i (1- i (r) sublattice L, under-
goes a stochastic change of configuration of occu-
pied sites while other sublattices are unchanged.
As 7- ~, the probability of different configura-
tions of the lattice gas tends to an invariant limit-
ing distribution. For arbitrary transition rates,
the calculation of the invariant distribution is
quite difficult. In the models studied below, the
transition rates are particularly simple and cor-
respond to commonly used Monte Carlo algo-
rithms for studying the equilibrium properties
of lattice gases with hard-core interactions. The
invariant distribution is the equilibrium Boltz-
mann distribution corresponding to a lattice-gas
Hamiltonian which can be written down by inspec-
tion. The Hamiltonian is of the form

P =+~+n,.n, —l.n(z)gn, ,

where the n,. 's are the occupation numbers of the
sites i, and the first sum is over al. l. nn yairs.
The calculation of equal-time correlation func-
tions in the CGM then reduces to that of the equi-
librium correlation functions in a (d —1)-dimen-
sional lattice gas. I consider some ilt.ustrative
examples bel.ow.

«&mp« i. Consider DSAE on a d-dimensional
body-centered hypercubical (d-bch) lattice. The
sites are labeled by d integers (n„n„.. . ,n, ),
which are all odd or all even. There are 2

bonds going outward from each site (n, ,n„.. . , n~)

to sites (n, ~1,n, +1, . . . ,n„,+1,n~+ 1) [Fig. 1(b)].
It is easy to see that this case corresponds to
successive relaxation to thermal equilibrium of
the two sublattices of a lattice gas on a (d —1)-
bch lattice having the Hamiltonian given by Eq.
(4) with z=p/(1-p).

If the animal-numbers generating function for a
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single point source on the d-bch lattice is A, b,h(x),
we see from Eq. {4) that

A, b,„(x)= -p(„,) ~„(z——x/(1+x)),
where p«» b,h(z) is the density of the lattice gas
on a (d —1)-bch lattice having nn exclusion (nne)
and with activity ~.

Specializing to the case d =3, we see that the
DSAE problem on the 3-bch lattice corresponds
to a "hard-squares" problem on the 2-bch
(square) lattice. The exact solution to this prob-
lem is not yet known. Baxter, Enting, and Tsang'
have evaluated the first 42 terms in the Taylor
expansion of p, t„q(z)in powers of &. With use of
Eq. (&), these determine the animal numbers on
the 3-bch lattice up to size 42.

Setting d = 2, we get the equivalence of DSAE on
the 2-bch (square) lattice to a nne lattice gas on a
linear chain. It is easy to see that the density of
the gas as a function of its activity ~ is given by

p, (~) = k-('-+~) "'. (7)

Substituting z = -x/(1+x), we get the generating
function for square-lattice animals'

The generating functions for animals correspond-
ing to a general source C are given in terms of
the n-point functions of the one-dimensional gas,
and are easily determined. We thus rederive the
results of Hakim and Nadal' in a more transpar-
ent way.

Example 2.—The DSAE problem on the triangu-
lar lattice [Fig. 1(c)]also corresponds to a one-
dimensional nne lattice gas. The only difference
here is that an occupied site at time T must be-
come vacant at time 1'+ 2, while a vacant site
with vacant neighbors becomes occupied with a
rate p. Hence, the activity of the lattice gas is
z = p. Substitution of this relation into Eq. (7)
gives the generating function for animal numbers
on a triangular lattice. '

&xamjle 3. consider a simple-cubic lattice
with nn and nnn directed bonds. The bonds have
a positive projection in the [111]direction. There
are six bonds going out of each site [Fig. 1(d)].
it is easy to see that the corresponding two-di-
mensional stochastic process describes the cyclic
relaxation to thermal equilibrium of the three
sublattices of a nn-exclusion lattice gas on a tri-
angular lattice. If A~(x) is the generating function
of animals growing from a point source in this
problem, we have from Eq. (4)

A, (x) = —p„„(z= -x/(1+x}),

where phh (&) is the hard-hexagon density as a
function of their activity ~. With use of Baxter's
expression for the free energy of the hexagon gas
as a function of its activity, it can be shown that
as x tends tox, =2/(9+5~5) from below, Phh(+)
varies as

A. = (9 + 5 K5)/2, 9 = Q = x . (9)

To test the universality of the exponent I9, I anal-
yzed the 42-term hard-square density series of
Baxter et al. I used a seven-parameter sequen-
tial fit of the form

lnA„=aon + a, —81n(u) + a2n '+ a3 n

+a n. +a m"
4 5

The values of a, obtained for n lying between 28
and 42 using seven successive terms of the series
agree with each other to the first eight significant
digits. 0 seems to converge to the value 0.83334
+0.00003. The hard-square and the hard-hexagon
gases correspond to two- and three-state Potts
models, respectively, and are known to have dif-
ferent critical exponents for positive activities.
The exponent for negative &, however, appears to
be independent of the Potts index q. This value of
~ agrees quite well with earlier numerical esti-
mates, ' 0.837~ 0.003. Finally, I note that because
of relations between critical exponents, this im-
plies that for four-dimensional undirected ani-
mals, 0 = ~, and for two dimensions the Lee- Yang
edge-singularity exponent is o = —-', .

I would like to thank Professor R. J. Baxter for
a useful correspondence, and Dr. A. K. Raina
and Dr. V. A. Singh for critically reading the
manuscript.
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and & are critical exponents. In this case
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