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A statistical model of interacting linear domain walls (occurring, e.g., in monolayer
adsorbates) is solved on the square lattice with use of exact and numerical results of an
equivalent eight-vertex model. For attractive walls a commensurate and an incommen-
surate phase are separated by a first-order line for stiff walls and by a fluid phase for
flexible walls. The phase boundaries with the fluid phase are Ising-like. For repulsive
stiff walls an intermediate striped phase with a nonuniversal boundary occurs which van-
ishes for higher flexibilities. Moreover, disorder lines are located.

PACS numbers; 05.50.+q, 64.60.Cn, 68.40.+e, 82.65.Dp

Two-dimensional phase transitions from a com-
mensurate (C) or a disordered [fluid (FL)] phase
to an incommensurate (IC) phase, as well as the
melting transition, are presently being extensive-
ly studied.'”® The statistical properties of these
phases are conveniently described in terms of
thin linear discommensurations (misfit disloca-
tions or compression walls, also allowing for off-
lattice sites) which separate larger nearly homo-
geneous (or commensurate) domains. This ap-
proach is rather general, quite transparent and
more appropriate than, for example, a multipa-
rameter lattice-gas model of adsorbed monolay-
ers, evaluated by Monte Carlo techniques (which
possibly miss certain topological excitations).
However, the difficult problem of the domain-
wall (DW) statistics is usually treated in a phe-
nomenological mean-field or Landau-Ginzburg
formalism, which is not expected to describe
correctly a low-dimensional system of walls.

In this Letter, the problem of the line statistics
of simple interacting domain walls is formulated
rigorously in terms of a lattice model.* Only one
type of (both horizontal and vertical) mutually in-
teracting DW’s with a given stiffness is consid-
ered for which no open ends or three-wall junc-
tions occur. This assumption is realized, e.g.,
for the two-sublattice structures p(2x2) or ¢(2

X 2) on square and p(2% 1) on rectangular (uni-
axial) substrate lattices. “Dilution” walls are
neglected for energetic reasons. Any line pat-
tern of DW’s, characterized by #, (r,) horizontal
(vertical) bonds, n, corners, and n, crossings,
is isomorphic to a bond graph of the eight-vertex
(8V) model® having weights w, =wg=w,=wy=1
[called subsequently the (1234) model]. The en-
ergy of a DW configuration is given in terms of
four microscopic parameters:
E =n,€, +1n,€, + Ny€p + €. (1)

€, and €, are the grand-canonical energies of a
horizontal and vertical bond, respectively, €, is
the corner (or bending) energy describing the
wall stiffness, and €, is the crossing energy
which is a measure of the wall-wall interaction.
A simple example is chosen for which only the
wall energies depend on the chemical potential p
of the adsorbate, €,=€,°~1/2, €,=€,°~pu/2,
whereas €, and €, are u independent (but a gener-
alization is straightforward).® In Fig. 1, the bond
representation and the choice of the weights w;
(for i=1,...,4) of the (1234) model are given in
terms of the Boltzmann factors H =exp(- 8¢,/2),
V =exp(~Be€,/2), B=exp(-B¢,), and C=exp(- Be,).

Various exact and numerical results on the 8V
model are summarized as follows: (i) The sym-
metric 8V model (solved exactly by Baxter®)
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FIG. 1. Arrow and bond configurations of the 8V model. The vertex weights are expressed in terms of the DW

Boltzmann factors (see text).

shows a nonuniversal critical behavior (with
weight-dependent critical exponents) and corre-
sponds to the isotropic DW model €,=€,=€ = =€,/
2 and arbitrary €,. (ii) For the general 8V model
various symmetries hold.® They imply, for ex-
ample, the equivalence of the (1234) and the (2143)
model. (iii) The free-fermion condition® for w,w,
+wyw, =2 leads to an exact solution of the special
case 1+C=2B? and describes an Ising-like criti-
cal behavior. In particular, the free-fermion
condition is fulfilled for the (12) model (w,=.
=wg=1, i.e., €,=€,, €,=0) in the special case of
zero crossing energy (e,=0) which is identical to
the Ising model (as the line graphs are identical
with the high-temperature Ising graphs). (iv) Along
the disorder line” the free energy is analytic, but
not necessarily across it. Hence the disorder
line does not cross in general any phase bound-
ary. For the (1234) model, it is defined by the
equation

[1+waw)"? =@, [ 1+ ww ) - w,]=1,

2)

wy,w, s 1+ (waw, )2

(v) An equivalence® relates the general 8V model
to the uniaxial Ising model with coupling con-
stants J*, J,°, J, and J, of the anisotropic near-
est-neighbor [nn(x), nn(y)], next-nearest-neigh-
bor, and four-spin interactions around a pla-
quette, respectively. The J’s are uniquely relat-
ed to the wall energies:

€,=2J7+4J, €,=2J,F +4J,
€, =-8J,

3)
€,==2J+2J .

Recent renormalization-group® *! and series-ex-
pansion'® calculations on the isotropic Ising mod-
el yielded the critical surface S in the space of
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parameters K,=8J,, K=8J, K,=pJ, (cf., e.g.,
Fig. 1 of Ref. 9). S is symmetric with respect to
the “Baxter plane” K,=0 and consists of two dis-
connected parts: the universal blade S, (with K,
+2K > 0) containing Ising-like critical points
(with the exception of the “Baxter points” with K,
=0), and the nonuniversal blade S, (with K+ 2k
<0). The nonuniversal critical points on the
“Baxter line” on S, and on all of S, have varying
exponents in general. Along the planes + K, +2K
=0 the two blades approach asymptotically at T

~ 0. On the low-temperature portion of the Bax-
ter plane, K,=0, K > {sinh™ {exp(- 2K,)]}/2, first-
order transition points are located (which corre-
spond to a flip of the spontaneous ferroelectric
diagonal polarization upon changing the sign of
Ko 13)‘

With use of Egs. (3) the phase diagram and the
critical behavior of the isotropic DW model with
€,=€,=€=€°~11/2 is calculated for various val-
ues of €, and €, yielding the following results:

(1) For attractive stiff DW’s, €,<0, €,>€,/2,
the (1, T) phase diagram [symmetric with respect
to u=0 because of (ii)] (see Fig. 2) shows a C
phase for p<2€°+4¢,, which is characterized by
a nondegenerate “empty” ground state at 7=0, a
low DW density, and an Ising-like order-disorder
phase boundary with the FL phase. For u>2¢°
+4€,, a high-DW-density phase describes a con-
centrated array of crossing discommensurations
with a nondegenerate ground state. It will be
termed the IC phase in the following.* The IC-
FL (order-disorder) boundary is Ising-like (for
in both cases the critical points lie on S). At u
=2€° +4¢, a nonuniversal bicritical Baxter point B
is located where a vertical first-order line sepa-
rating the C from the IC phase joins the C-FL
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FIG. 2. Schematic phase diagram for ¢, =€¢%/2, ¢,
= -2¢%, The Ising-like phase boundaries C-FL and IC-
FL merge into the first-order C-IC boundary at the
bicritical Baxter point B (which decreases with de-
creasing €,). For ¢, < €./2 a finite FL gap opens for
all 7 (not shown).

and the IC-FL phase boundaries. The Baxter
temperature T decreases with €, (for fixed €,
<0), and T=0 for €,<€,/2.

(2) For attvactive flexible DW's, €,<0, €,<€,/
2, a finite FL gap opens between the C and the IC
phases for 7' > 0 with a highly degenerate ground
state. The existence of a first-order transition
for attractive DW’s which was conjectured for
hexagonal patterns® is thus proved on square
structures for stiff DW’s (€,>¢€,/2>0) but dis-
proved for flexible ones (¢,<€,/2). Moreover, in
the case (1) an order-order C-IC transition (of
first order) occurs instead of an intermediate FL
phase [as in case (2)]. Interestingly, according
to a recent conjecture® a FL phase exists always
down to T =0 for (2X 1) structures on hexagonal
substrates.

(3) For repulsive stiff DW’s, €,>0, €,>0, a
C phase occurs for u<2¢€® and an IC phase for
>2€°%+ 2¢, with Ising-like phase boundaries (see
Fig. 3). In addition, a qualitatively different in-
termediate IC’ phase is sandwiched between the
C and IC phases. It has a doubly degenerate
ground state formed by a parallel array of dis-
commensurations either in the horizontal or the
vertical direction.’® The IC’-FL phase boundary
is nonuniversal since its critical points lie on
S,uw- On the crossing with the symmetry line pu
=2€%+¢, a Baxter point B is located. No first-
order line occurs in this case. A disorder line
[Eq. (2)] appears for u<2€° and for p>2¢€°+2¢,
and separates in each case two regions of the
fluid phase, FL and FL’, in which the correlation
functions may have a different behavior,®

(4) For repulsive flexible walls, €,>0, €,<0,
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FIG. 3. Schematic phase diagram of the DW model
with €, =€, = €%/2. The solid lines denote the C-FL and
the IC-FL phase boundaries (with Ising-like critical
points) and the IC’-FL phase boundary (with nonuniver-
sal critical points, e.g., with » = 0.6 at B). The broken
lines show the disorder lines [ Eqs. (2)].

a qualitatively similar phase diagram as in case
(2) shows up.

(5) For the uniaxial DW model, no explicit nu-
merical data have yet been calculated. However,
it follows from a renormalization-group analysis'®
that all continuous phase boundaries are, in fact,
Ising-like.

An alternative DW model for the extreme uni-
axial case €, =« can be formulated in terms of a
general six-vertex model, which shows a variety
of continuous Ising-like, F-like (or Kosterlitz-
Thouless like), and first-order transitions. It
will be studied elsewhere.

Other problems are described by this model as
well. For example, the (12) model [cf. (i)] is one
of the simplest cases of the (anti)ferroelectric 8V
model in a diagonal field and is of interest on its
own.'” Also, it is equivalent to the Ising model
on the square lattice with local bond disorder de-
fined by the Hamiltonian in Eq. (4) of Ref. 18 with
J=pe, F=-p¢,, locating the bicritical point at
F_,=21n3=2.197... (for ¢ =2). The limit of
an infinite wall repulsion (€, =) is the two dimen-
sional, multiplicity-1 case of the loop-gas mod-
el.'® For negative wall energies, € <0, the (12)
model has no phase transitions for 7' > 0.

Furthermore, a special case of the (1234) mod-
el is equivalent to a simple lattice gauge model.*

In conclusion, the statistical problem of iso-
tropic discommensuration walls on quadratic
structures is solved by use of exact and numeri-
cal results. For various choices of the bending
and crossing energies, the phase diagrams and
the critical properties are established. For ex-
ample, phase transitions in monolayers at over-
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saturated or submonolayer coverages on square
substrate faces [e.g., in H/Pd(100), O/Ni(100)?!]
can be described. In the case of low coverages
and strong nearest-neighbor repulsions the phas-
es C, IC’, and IC would correspond, e.g., to the
structures p(2x2), p(2x 1), and c(2%x2), respec-
tively. Unfortunately, at present no experimen-
tal critical exponents are available for a quanti-
tative comparison of the model’s predictions. A
detailed discussion of experimental phase dia-
grams will be given in an extended paper. Also,
a generalized DW model describing several kinds
of walls (e.g., on hexagonal structures) will be
elaborated.

This work was initiated by an interesting con-
versation with P. Kleban. Thanks are also due
to M. N. Barber, A. N. Berker, W. Helfrich, and
V. L. Pokrovskij for stimulating discussions and
to S. Reindl and D. Tomének for technical assis-
tance. The project was supported by the Deutsche
Forschungsgemeinschaft.
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