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Phase Correlations in One-Dimensional Disordered Systems
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The correlation function of the phases of a quantum particle in a one-dimensional ran-
dom potential is defined and calculated analytically and numerically. Away from eigen-
states it decays exponentially with the phase correlation length equal to half of the local-
ization length, while for the eigenstates it saturates at nonzero value.
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A number of recent papers' ' have focused on
the problem of the one-dimensional random po-
tential. It was assumed that there exists some
length over which the phase of the wave function
is completely randomized. This phase-random-
ization assumption contains two separate issues.
The first is that the phase correlations decay to
zero and the second is that the limiting prob-
ability distribution of the phases is uniform. The
phase-randomization assumption was later dis-
cussed by Lambert and Thorpe4 and by Stone,
Allan, and Joannopoulos. ' They demonstrated
that the limiting probability distribution need not
be uniform but did not study the correlations of
the phases. In the present Letter we define a
phase correlation function (PCF) q~h(s) as the
sensitivity of the phase at some point to the change
in phase at another point a distance s away, av-
eraged over all possible positions of these two
points with fixed separation, and prove that away
from eigenstates it decays exponentially with
correlation length equal to half of the localization
length. For the eigenstates the phases are not

e "(x) +I k'- V(x)] e(x) =O.

This equation can be locally solved at any point
The local solution 4 „(x)=exp(ik„(x -x„)J

satisfies two boundary conditions, @„(x„)= 1 and
0„'(x„)=N„, where k„=[k' —V(x„)J'Z'. ' The
complex conjugate @„*(x)of the local solution
@„(x}is also a local solution of a Schrodinger
equation. A general function, locally satisfying
Eq. (1) at x„, can be written as a linear combina-
tion of the two local solutions:

4(x) =A„C„(x)+B„C„*(x). (2)

The coefficients at adjacent points are connected
by the transfer matrix'

randomized and PCF saturates at a nonzero value.
The random system is considered only at zero

temperature; therefore the phase averaging due
to phonon scattering is neglected and the problem
is reduced to that of a single particle in a random
potential (electron-electron interactions are also
neglected}. The corresponding Schrodinger etlua-
tion in convenient units is

(
A„„k. ~' exp(in. „)/cos(h „) exp(i'„) tan(h „) A„
B„„k„„xep(-i~3„)tan(h „) exp(-to, „)/cos (h „) B„ (3)

4(x}=A„4„(x)+A„*4„+(x) . (2a)

Complex coefficients A.„can be rewritten in the
form

where h„determines the transmission, while a„
and ii„determine the local phase shifts of the re-
flected and transmitted waves. Since the Schro-
dinger equation is linear it is sufficient to con-
sider currentless (i.e., real) wave functions

! where G„and y„are real numbers.
The transfer matrix defined in Eq. (3) leads to

the following relation for the G„'s' '.

G„„=G„+ln " +ln = 2"-. -, 5
k„1+g„'
n+1 n-1 ~n / n -1

where k„=[k' —V(x„)J' ', &u„=tan'(-, w ——,'h„),
and y„can be determined from the recurrence
relations

A„= —,
' exp(G„/2 —i(p„/2), (4) y„„=(u„(y„—r„)/(1+y„r„),
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with

r„=tan(p„),

where

p„= —,'(o.„-0„+o.„-,+0„,) .

(7a)

(7b)

1014

10
10

y„=tan(f„),

where

(8a)

The phases y„defined in Eq. (4) are related to
y„ by

LLJ

Z.'

I- 10

(A
LLJ

fn = ~2(V'n +on-i+~n-i } ~ (8b)
10

In this notation the recurrence relations [Eq.
(6}]can be rewritten in the form

tan(f„„) = cu„ tan(f„—p„) = &u„ tan( f„),
where

(9a) I
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LENGTH L

I

200
I

500

f.=f.-p. = l(W. -o'. +&.) ~

Substitution of Eqs. (8a) and (9a) into Eq. (5)
leads to

(9b}

out + ln m-1

where TI is the transmission coefficient and
superscripts (+) correspond to y, =+1.

In a random system the absence of the long-
range order means that the boundary effects
G~'- G~ go to a constant as L-~. Then R~
~ exp(G~) ~ exp(2x~/L, ), where G~ = (G~'+ G~ )/2
and L, =lim(2x~/InR~) is the wave-function local-
ization length. This is confirmed in a numerical
calculation for a variety of random potentials.
The dependence of the resistance R~ on the
length of the system for a potential V(x) =5~„-,~ I'„
x 5(x -m) is presented in Fig. 1 (solid line) for
wave number k = 1.7 and the probability distribu-
tion of the random potential P( V„) = —,'5( V„—2)
+ —,'o( v„).

By Eqs. (2a) and (4) resistance of a system of
length x~ is proportional to the particle probabil-
ity density

~ 4(x~) ~'. In the analysis below we

where k,„, corresponds to the value of the poten-
tial outside the system.

Two independent solutions can be obtained by
choosing y, =+1, n, =h, =O, P, =v/2. The linear
combination of these solutions that has no in-
coming wave at one end of the system gives the
dimensionless Landauer resistance"

R~= T~ '-1=(exp(G~')+exp(G~ ) -2)/4,

FIG. 1. The dependence of the resistance on the sys-
tem length for the potential p Q) = Z„~p„g Q —n) with the
probability distribution P [V„j= &f(V„—2) +-.'5(V„) and
for wave vectors k =1.7 (solid line) and the localized
eigenstate P =1.975025 22 (dashed line) is calculated by
exact Eqs. (1)—(ll) for some random configuration.
Away from eigenstates resistance increases exponential-
ly with +=18.9, while at the eigenstate it peaks at the
region of local. ization.

distinguish two qualitatively diff erent behaviors
of the particle probability density in the random
system. Case I is the exponential decay of

~ @(x~)~', corresponding to the particle of some
arbitrary energy, not equal to the eigenstate, re-
flecting from the system. The transmission co-
efficient in this case is exponentially small, T~
o- exp(- 2x~ /L, ), and the particle is "localized"
outside the system (solid line in Fig. 1). Case II
is the exponential localization of the particle at
some point inside the system. The probability
density first increases exponentially, peaks at
the point of localization, and then exponentially
decays (dashed line in Fig. 1). This case cor-
responds to the resonance tunneling through the
eigenstates of the system. "

PCF is defined below and it is proven that its
behavior is different in cases I and II. Let us
introduce a small change Dy„of the phase q„at
the point x„. We are interested in the induced
phase change at other points. Since the phases
u„and P„ in the transfer matrix [Eq. (8}] are
fixed by the random potential, from Eqs. (7b),
(8b), and (9b) it follows that p„remains unchanged
and the corresponding changes of f„and j„are
6f„=6f „=—,'Gy„. The recurrence relation [Eq.
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(9a)] can now be used to find the induced phase
change at the adjacent point:

6&y„„=&g„(cos'f„„/cos'f„}by„. (i2)

5y„„~5q „/R(x„,x„„). (15}

Hesistance increases exponentially with length in
case I (solid line in Fig. 1) and the phase j„,~ at
the point x„,~ in a given random system is inde-
pendent of the phase y„at x„with exponential ac-
curacy and depends only on the local potential
within I-, of point x„,~.

Suppose we start with two waves which are out
of phase by & at point x„; the phase difference at
point x„,~ is a measure of the phase correlation
between these points:

q(x „,x„„)= ~ '[q „„(q„')—q „,p (q „)], (16)

where &p„,~(y„') is the phase at pointx„, ~ in-
duced by two independent phases y„'=0 and qr„
= & at x„. Since a wave function with arbitrary
phase can be represented as a linear combina-
tion of two wave functions with phases 0 and r,
the quantity q(x„,x„,~) describes the phase cor-
relations in a given random sequence between
points x„and x„,~. From Eq. (15) it follows that

rg(x„, x„,~}~ 1/R(x„, x„„), (17)

and the extensive quantity which scales and has
regular fluctuations [~(x„,~ -x„) '~'] is inI q(x„,
x„,~)]. However, the phase correlation at sepa-
rations s =x„,~ -x„ is described by the average
of the function itself, q&h

= (q(x„,x„,~)), rather
than its logarithm. We can consider either en-

Applying Eq. (12) p times we determine the in-
duced phase change p points away:

/

I
'u'. .cos f~

m-n+| 41 m leos m

Combining Eq. (10) with Eq. (13) we find

br'„,~=(k„„/k„, „)exp(-(G„, „—G„„)}&&p„.

(i4)
In what follows we assume that there is no over-
all potential gradient and that we can choose
points x„with the same value of random potential
V(x„)= V,„, so that all k„'s are the same and
their ratio drops out from Eq. (14).

Since the resistance of the segment is propor-
tional to the exponential of G~, the sensitivity of
the phase at one point to the change in phase at
another point is inversely proportional to the re-
sistance of the segment of the system between
these points:

semble average or the average over all possible
positions of two points with fixed separation s
inside the system. PCF is similar to the spin-
correlation function of random Ising model. "

For disorder on a lattice with unit spacing (x„
=u), PCF is defined as

L-s
q,h(s) = — P q(n, n + s}.—S n=1

(18)

In the case I q(n, n+s) ~ 1/R(&1, , n +s) ~ exp(-2s/
I,,) and PCF decays exponentially,

q ph(s} ~ exp(-2s/L, ) . (19)
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FIG. 2. The phase correlation function (PCF) for the
systems introduced in Fig. 1 is calculated by Eq. (18).
Away from eigenstates it decays exponentially with the
phase correlation length approximately equal to half of
the localization length (solid line). At the eigenstate
PCF saturates (dashed line).

The phase "forgets" its initial value exponentially
fast. The numerical calculation (solid line in
Fig. 2) verifies this result.

PCF exhibits more interesting behavior in case
II. At the eigenenergy of a given random system
the correlation between the phases at the end
point and the point a distance s away first ex-
ponentially decays with s, reaches an exponen-
tially deep minimum in the localization region,
and then exponentially increases with s, and can
even be of order unity if the localization point is
near the center of the system. The correlations
between the phases at the points with equal values
of resistance (which are located at approximate-
ly" equal distances from the localization region)
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qzh(s) ~exp(-2s/Lo) +Lo/2L . (20)

As the size of the system increases (L —~) Eq.
(20) approaches Eq. (19). However, at large dis-
tances s &(Lo/2) ln(L/2L, ) the correlation satu-
rates. In order to calculate the corrections to
Eq. (20) one has to take into account the fluctua-
tions of the resistance (Fig. 1) and boundary ef-
fects.

The results of the numerical calculation for the
eigenstate k =1.97502522 of the system of length
L =300 with potential V(x) =P„-,V„5(x -n) and

the probability distribution P( V„) = 25(V„—2)
+ ,'5(V„) ar-e presented in Fig. 2 (dashed line).
The corresponding localization length is Lo —20
and PCF saturates for s& 20 [the theoretical value
is (L,/2) ln(L/2L, ) =—20.1] at the value q~h = 3~0

predicted by the theory. Large fluctuations are
due to the fact that q is not an extensive quantity
and is not averaging well. The average of lncg is
a, smooth curve. This problem is similar to the
one with average and representative resistances.
The fluctuations are increasing with s and the
slope of the saturation line becomes positive be-
cause we are averaging over smaller number of
pairs for larger separations.

Summarizing, we would like to stress that Eq.
(20) and Fig. 2 (dashed line) imply that there are
finite correlations of eigenstate phases at large
separations in random system. The phases of

in a given system are of order unity, no matter
how far off these points are from each other.
The phase, which has exponentially well "for-
gotten" its initial value, starts "recalling" it
after the localization point. In the sum of Eq. (18)
most of the terms are proportional to exp(-2s/
L,) and only a small fraction (~L,/2L) of them
are of the order unity. Thus

the eigenstates are not randomized. Away from
eigenstates the phase correlation length is equal
to half of the localization length.
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