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The asymptotic large-momentum-transfer behavior of the deuteron form factor and
the form of the deuteron distribution amplitude at short distances are derived from
perturbative quantum chromodynamics. The fact that the six-quark state is 80% hidden
color at small transverse separation implies that the deuteron form factors cannot be
described at large Q by meson-nucleon degrees of freedom, and that the nucleon-nucleon
potential is repulsive at short distances.
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If quantum chromodynamics (QCD) is the theory
of the strong interactions, then by extension it
must also provide a fundamental description of
the nuclear force and nuclear physics. Since the
basic scale of QCD, AM, , is of order of a few
hundred megaelectronvolts or l.ess, one expects
a transition from the traditional meson and nu-
cl.eon degrees of freedom of nuclear physics to
the quark and gluon degrees of freedom of QCD
at internucleon separations of a fermi or less. '

In this Letter we give the first exact results
for a nuclear amplitude as predicted by perturba-
tive @CD. The asymptotic behavior of the deu-
teron form factor at large momentum transfer
and the evolution of the deuteron six-quark dis-
tribution amplitude at short distances are com-
puted to l.eading order in e,(Q'). The QCD pre-
dictions appear to be in excell. ent agreement with
experiment for Q'a 1 GeV' when expressed in
terms of the deuteron reduced form factor. This
provides a good check on the six-quark descrip-
tion of the deuteron at short distances as well as
the scale invariance of the elastic quark-quark
scattering amplitude. The dominance of the hid-
den-color amplitudes at short distances also pro-
vides an explanation for the repulsive behavior
of the nucleon-nucleon potential at small inter-
nucleon separation.

The hadronic form factors' in QCD at large
momentum transfer Q' = q2 —q,' can be written
in a factorized form where all nonperturbative
eff ects are incorporated into process-independent
distribution amplitudes yn(x;, Q), computed from
the equal ~ =t+~, six-quark valence wave func-
tion at small relative quark transverse separa-
tion b~'- O(l/Q). The x,. =(lt'+ lt'), /(p'+ p') are
the light-cone longitudinal momentum fractions

y„(x, , Q) f ' [d'k ]g„„„(x,,k,.)
gives the probability amplitude for finding the
quarks with longitudinal momentum fractions x,.
in the deuteron wave function collinear up to the
scale Q. Because the coupling of the gauge gluon
is helicity conserving and because of the fact that
y, (x, , Q) is the I, =0 projection of the deuteron
wave function, hadron helicity is conserved':
The dominant form factor corresponds to 4A(Q');

$(x,Q) 4(y, Q)

FIG. 1. The general structure of the deuteron form
factor at large Q~.

with Z";,x, =1. In the case of the deuteron, only
the six-quark rock state needs to be considered
since in a physical. gauge any additional. quark or
gluon forced to absorb large momentum transfer
yields a power-law-suppressed contribution to
the form factor. The deuteron form factor can
then be written as a convolution (see Fig. 1),

+,(Q ') = f, [dx) [dy ]e,'(y, Q )

x 7'n'"y "(x,y, Q )y, (x, Q ),

where the hard-scattering amplitude

T ea+y'-«-[ty (Q2)/Q2]st(x y)

x [1+O(~. (Q'))]

gives the probability amplitude for scattering six
quarks collinear with the initial to the final deu-
teron momentum and
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(4)

i.e., h =h'=0.
The distribution amplitude p&(x, , Q ) is the basic deuteron wave function which controls high-momen-

tum-transfer exclusive reactions in QCD. The logarithmic Q dependence of y„ is determined by an
evolution equation computed from perturbative quark-quark scattering kernels at large momentum
transfer, or equivalently, by the operator-product expansion at short distances and the renormaliza-
tion group. '

The QCD prediction for the leading helicity-zero deuteron form factor then has the form'~
d—

F(q')= ', P d „1n, 1+0(a,(Q*),—),
Pal nfl

where the main dependence [o.', (Q2)/Q']' comes from the hard-gjuon exchange amplitude T„. The
anomalous dimensions y„" are calculated from the evolution equations for y„(x,, Q).

The evolution equation for six-quark systems in which the constituents have the light-cone longitudi-
nal momentum fractions x, (i = 1,2, ~ ~ .,6) can be obtained from a general. ization of the proton (three-
quark) case. ' A nontrivial extension is the calculation of the color factor, C„, of six-quark systems'
(see below). Since in leading order only pairwise interactions, with transverse momentum Q, occur
between quarks, the evolution equation for the six-quark system becomes ( dy]= 5(1 —Q', ,y,.}g', ,dy, ,
C~=(n, 2-1)/2n, =&4, P =11—-', nz, and nz is the effective number of flavors)

8 3C cg x„—, + ' C(x, , Q)=-~ [dy]V(x, ,y,.)C(y, , Q),
)) =1 0

where the factor 3 in the square brackets comes from the renormalization of the six-quark field. In
Eq. (5) we have defined 4(x, , Q) =g'„,x„C(x;, Q). The evolution is in the variable

P
u' du' ln(Q'/A2)

$(Q~) =4, n, (k')- ln (,/, )0

(5)

(6)

By summation over interactions between quar~ pairs (i, j}due to exchange of a single gluon, p(x„y,.)
= V(y„x,.) is given by

6 6 6 EO

&(;,S;)=2 II,Z jj(y; —;)II 5(, —X,)
~e~~ l+$2 +J +4+

where |j„,~. = 1 (0) when the helicities of the constituents (i, j}are antiparajlel (parallel). The infrared
singularity at x,. =y,. is cancelled by the factor DC(y, , Q) =4(y, , Q) —C(x, , Q) since the deuteron is a
color singlet.

The six-quark bound states have five independent color-singlet components (3&& 3&& 3&& 3&& 3&& 3 D 1+1
+ 1+1+1). It can be shown in generals that the color factor C, is given by

(jj)

where X, (a =1,2,~, 8) are Gell-Mann matrices in the SU(3)' group and S,,» „(o,= 1,2, ..., 5) are
the five independent color-singl. et representations. Here we shall focus on results for the leading con-
tribution to the distribution amplitude and form factor at large Q. Since the leading eigensojution to
the evolution equation (5) turns out to be completely symmetric in its orbital dependence, the dominant
asymptotic deuteron wave function is fixed by overall. antisymmetry' to have spin-isospin symmetry
(33}~which is dual to its color symmetry [222], . Thus the coefficient for each c (and TS) component
has equal weights:

y„([222], )3(33}r~)=(1/v'5) Q (-1)"[222], (33}rg".

Since the evolution potential is diagonal in isospin and spin, C„ is computed by the trace of the color
representation. The color factor" is —& for the color-antisymmetric pair (i,j}and + v for the
color-symmetric pair (i,j }.. Since three color-antisymmetric pairs (i,j}exist in this state, the
color factor is'

C, = —,' (-& x 3 +& x 2) = -C „/5. (10)
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To solve the evolution equation (5), we factorize
the Q' dependence of C(x;, Q) as

C(x, , q) =4(x, )e-" =C(x, )[in(q'/A')] -', (11)

where the eigenvalues of y will provide the anoma-
lous dimensions y„. The general matrix repre-
sentations of y„with bases ~+5-,x, ~) are given
in Ref. 5. The leading anomalous dimension y,
[corresponding to the eigenfunction 4(x;) =1J is

o7 6.00
X

4 0
CJ
C3

2.0

(bj

3C C+~ E ~5. 5
g ~l

(12)

so that the asymptotically dominant result for the
helicity-zero deuteron is given by y, =+ C~/P.

In order to make more detailed and experimen-
tally accessible predictions, we define the "re-
duced" nuclear form factor' to remove the effects
of nucleon compositeness:

~ (q')
fd(q ) = ~ 3(qa/4) (13)

The arguments for the nucleon form factors (E~)
are Q' /4 since in the limit of zero binding energy
each nucleon must change momentum Q /2 be-
cause of the electromagnetic interaction. Since
the leading anomalous dimension of the nucleon
distribution amplitude is C~/2p, the @CD pre-
diction for the asymptotic Q' behavior of f, (Q')
is'

(Q2) Q3' -( 3/5) C~/5
f~(Q3) - '

5 ln —, (14)

where + C~/P = -~55 for n/ = 2.
Although the @CD prediction is for asymptotic

momentum transfer, it is interesting to compare
(14) directly with the available high-Q data, "
(see Fig. 2). In general one would expect cor-
rections from higher-twist effects (e.g. , mass
and k~ smearing) and higher-order contributions
in n, (Q'), as well as nonleading anomalous di-
mensions. However, the agreement of the data
with simple Q'f, (Q') -const behavior for Q') —,

'
GeV' implies that, unless there is a fortuitous
cancellation, all of the scale-breaking effects
are small, and the present QCD perturbation cal-
culations are viable and applicable even in the
nuclear physics domain. The lack of deviation
from the QCD parametrization suggests that the
parameter A in (14) is small. A comparison
with a standard definition such as A~s would re-
quire a calculation of next to leading effects. A
more definitive check of @CD can be made by cal-
culating the normalization of f5(Q3) from TH and
the evolution of the deuteron wave function to

I I

2
Q2 (G5V2)

FlG. 2. (a) Comparison of the asymptotic QCD pre-
diction f5(Q )~ (1/Q )[ln (Q2/A2)] ~ @ &/5 with final
data of Ref. 10 for the reduced deuteron form factor,
where EN(Q ~) = [1+Q2/(0. 71 GeV3) j 2. The normaliza-
tion is fixed at the Q ~= 4 GeV2 data point. (b) Compari-
son of the prediction [1+ (Q /m5 )]f5(Q )~[ln (Q /
A )] ~ /' ) &/'8 with the above data. The value m
= 0.28 GeV is used (Ref. 8).

short distances. It is also important to confirm
experimentally that the h =O' = 0 form factor is
indeed dominant.

We note that the deuteron wave function which
contributes to the asymptotic limit of the form
factor is the totally antisymmetric wave function
corresponding to the orbital Young symmetry
given by [6] and isospin (T) + spin (5). Young sym-
metry given by (33). The deuteron state with
this symmetry is related to the XN, 4A, and
hidden-color (CC) physical bases, for both the
(TS) = (01) and (10) cases, by the formula'

k(5]{33) (9) elva+(45) eDB+ (5) ecc ~

(15)

Thus the physical deuteron state, which is most-
ly ({5,„at large distance, must evolve to the
{[«&(33) state when the six-quark transverse
separations b~' - O(1/Q) -0. Since this state is
80 jo hidden color, the deuteron wave function can-
not be described by the meson-nucleon isobar
degrees of freedom in this domain. The fact that
the six-quark color-singlet state inevitably
evolves in @CD to a dominantly hidden-color con-
figuration at small transverse separation also
has implications for the form of the nucleon-
nucleon potential, which can be considered as one
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interaction component in a coupled-channel sys-
tem. As the two nucleons approach each other,
the system must do work in order to change the
six-quark state to a dominantly hidden-color con-
figuration; i.e., QCD requires that the nucleon-
nucleon potential must be repulsive at short dis-
tances. " The evolution equation (5) for the six-
quark system suggests that the distance where
this change occurs is in the domain where a, (Q')
most strongly varies.
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