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The first systematic study of the energy dependence of a core-level shake-up feature
is presented. In contrast to expectations the shake-up peak remains nearly unchmged
in intensity down to —15 eV above threshold. The early and abrupt turn-on of the multi-
electron satellite found experimentally is well explained by a theory which describes the
transition from adiabatic to sudden core-level excitation by a simple exch~~pe-interaction
picture.

PACS numbers: 79.60.Qs

One of the fundamental assumptions commonly
used in the interpretation of photoemission spec-
tra is the validity of the sudden approximation. "
In the sudden-excitation limit the ionization
process is so rapid that the other electrons on
or near the excited atom do not have time to re-
arrange themselves to the new hole potential.
The ion may thus be left in excited states which,
relative to the lowest-energy final state, may be
envisioned as multielectron excitation states
where other electrons are "shaken" into the con-
tinuum (shake-off) or unoccupied bound states
(shake-up). Through energy conservation these
multielectron excitations manifest themselves in
the photoemission spectrum as satellites or
asymmetric line -shape' contributions.

It has long been thought that the sudden approx-
imation should break down in the limit where the
photoelectron leaves the atom slowly. " In this
adiabatic excitation limit the electrons on or
near the excited atom lower their energy by slow-
ly adjusting to the effective atomic potential in
an instantaneous, self -consistent way. Hence the
multielectron shake processes do not exist and
the photoemission satellites4 and asymmetric
line-shape effects" should be absent.

Despite these longstanding qualiIati ~, e time-de-
pendent ideas about the adiabatic and sudden ex-
citation pictures, very few quantitatiile experi-
mental and theoretical investigations have ad-
dressed the issue of the transition between the
two excitation limits. The common view, based
on the pioneering work by Carlson and Krause
(CK), ' is that of a smooth transition, with the
sudden limit being reached about 200 eV above
threshold.

Here we present the first systematic experi-

mental study of a well-defined, pronounced core-
level shake-up peak in the expected transition
region between adiabatic and sudden excitation.
We show that contrary to expectations the transi-
tion from adiabatic to sudden excitation is abrupt
and essentially completed less than 15 eV above
the core-level excitation threshold. We also
present an interpretation of these results by a
simple exchange model which is based on a sim-
plified version of the Hartree-Pock approxima-
tion. As emphasized by Stern, ' this model offers
a contrasting alternative to the prevailing view
that the energy dependence of the shake-up ampli-
tude can be interpreted as a time-dependent
crossover from the adiabatic to the sudden ap-
proximation. "' The model also leads to pre-
dictions which can be tested experimentally.

We have investigated the 1s core-level photo-
emission and absorption spectra of molecular N,
on Ni(110). This system and the similar N, /
¹(100)system had previously been extensively
studied by x-ray photoemission spectroscopy
(XPS),"ultraviolet photoelectron spectroscopy
(UPS), ' and near-edge x-ray absorption fine-
structure (NEXAFS)" measurements. N, stands
up on the surface" and its weak chemisorption
bond is found to be responsible for giant satellite
features in both valence' and core-level" photo-
emission spectra. In particular, the N 1s XPS
spectrum is composed of two peaks of approxi-
mately equal intensity, separated by ~= 5 eV, '
which have been associated with a screened and
unscreened final state, respectively. " " The
low-binding-energy (Es) peak ("main line" ) cor-
responds to a final state screened by charge
transfer from the metal to the adsorbate via the
2~ orbit. The higher-E~ satellite has been sug-
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gested"' '" to originate from a shake-up tran-
sition from a bonding to an antibonding orbital
both of which are formed by hybridization of
molecular 2m and metal Sd and 4sp states. '3 It
is the unusually large intensity of the shake-up
satellite which renders the N, /Ni(110) system
ideally suited for a detailed energy-dependent
study.

The experiments were performed under experi-
mental conditions which have been described in
detail before. " The N 1s photoemission spectra
at saturation coverage and 90 K were recorded
in the constant-final-state (CFS) mode in order
to minimize problems due to the steep secondary-
electron background near threshold. By scanning
the photon energy the N 1s core line is swept
through the electron energy analyzer (cylindrical
mirror analyzer, CMA) window, which is set at
a kinetic energy E* above the vacuum level. A

photoemission spectrum results where increasing
photon energy corresponds to increasing E~.
Spectra recorded at final-state energies E ~ = 150,
7.5, and 2.5 eV are shown in Fig. 1. The two
observed N 1s peaks are denoted as screened (8,
main line) and unscreened (U, satellite). In or-
der to obtain the relative intensities of peaks U

and S at a, given excitation (photon) energy two
CFS spectra need to be compared which are re-
corded at final-state energies E~ that differ by
the energy separation ~ between the two peaks.
This is illustrated in Fig. 1 where the intensities
of corresponding peaks S and Ufor hv~414 eV
are shown as dashed lines. After background sub-
traction the CFS spectra were curve fitted by a
Doniach-Sunjid line-shape function which was
convoluted with a Gaussian curve to account for
the analyzer and monochromator resolution func-
tions.

The obtained satellite-to-total intensity ratio
U/(U+ S} is plotted as solid circles in Fig. 2 as
a function of excitation energy E,„above the N
1s threshold (400.5 eV). Surprisingly, the inten-
sity ratio changes little (&20'//~} between the high-
est (150 eV} and lowest (-15 eV) E,„v luae .s
Since the separation between peaks S and U is —5
eV the satellite U will be absent for E,„& 5 eV.
This is confirmed by NEXAFS spectra" of the N
E edge for N, on both Ni(100} and Ni(110). The
NEXAFS spectra for N, on Ni(110} are identical
to those for N, on Ni(100) which have been pub-
lished previously. " In both cases the strong ab-
sorption resonance at threshold (400.5 eV) has
no visible satellite at 5 eV higher excitation en-
ergy. Hence the satellite U is found to turn on
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FIG. 1. N 1s photoemission spectra for N., on Ni(110)
at 90 K recorded in the constant-final-state mode. The
analyzer window (1.6 eV resolution) was set at different
energies F* above the vacuum level. Increasing photon
energy corresponds to increasing binding energy. Peak
S is the main line, peak U a shake-up satellite. The
Doniach-Sunjic line-shape functions used for the fit
are shown as dashed lines.

abruptly in the interval 5 eV -8,„15eV. This
experimental finding is well explained by the fol-
lowing simple exchange model for the energy de-
pendence of the shake-up intensity. While a more
detailed and complete calculation could be made, "
one would expect the correct energy dependence
to be roughly similar.

The shake-up intensity p' as given by Fermi's
"golden rule" within the Hartree-Fock approxi-
mation is

where D=g, d, is the dipole operator. The Slater
determinant wave function 4, is constructed
from one-particle eigenfunctions of the effective
one-electron Hamiltonian H for the ground state;
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cording to Eq. (4) indeed shows good agreement
with that measured for the shake-up peak U for
N, on Ni(110). Especially the fast turn-on is sat-
isfactorily accounted for as shown in Fig. 3. In

making the comparison we have used the fact
that the total transition probability to the main
line and shake-up state is constant. The ob-
served behavior for N, on Ni(110) is in marked
contrast to that reported for the shake-off inten-
sity in Ne (Ref. 1) which has long been consider-
ed characteristic for the transition from adiabat-
ic to sudden excitation. The gradual increase of
the shake-off intensity for Ne shown in Fig. 3 is,
however, not in conflict with the present results
but can be understood from the fact that the cen-
troid of the shake-off energy is quite large (~
-100 eV).4 Thus the sudden limit is not reached
until the excitation energy exceeds this value.

The present study establishes concepts which

govern the transition from adiabatic to sudden
core-level excitation. Besides contributing to
the understanding of fundamental questions in
photoemission theory it has direct implications
for the interpretation of the near-edge structure
in x-ray absorption which is of high current
interest. In good accord with a recent study by
Stern" our results indicate that shake-up fea-
tures should in fact have nonnegligible intensity
close to threshold.
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