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Broadband Population Inversion
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A theory is presented for construction of sequences of phase-shifted radiation pulses
for coherently inverting populations over a broad band of transition frequencies. Such
sequences have applications in nuclear magnetic resonance and coherent optics. Ex-
amples of sequences are derived, together. with computer simulations of their inversion
properties.
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The ability to achieve population inversion with
coherent radiation is essential to many techniques
in pulsed nuclear magnetic resonance (NMR)' '
and coherent optics. ' ' In an ideal system with a
single sharp transition frequency, a n pulse ex-
actly at that frequency with a constant phase
would produce the desired inversion. However,
any real system has transition frequencies over
a certain bandwidth resulting, for example, from
chemical shifts or spin couplings in NMR or from
Doppler broadening or crystal strains in optics.
The presence of a range of transition frequencies
makes it impossible to achieve a complete reso-
nant inversion, leading us to the important prob-
lem of maximizing the inversion over the existing
bandwidth. Gne approach to that problem is sim-
ply to use a n pulse with the shortest possible
length and the largest possible peak power. Of
course, this approach is subject to practical lim-
itations beyond which there is no way to system-
atically improve its performance. A more pow-
erful approach is to design sequences of coher-
ent, phase-shifted pulses that can effectively in-
vert populations over a larger bandwidth without
any increase in peak power. " In this Letter, I
present a systematic theoretical method for the
construction of such sequences for broadband pop-
ulation inversion.

We begin by considering the response of a sys-
tem to a general sequence of coherent radiation
pulses. With use of NMR nomenclature, the Ham-
iltonian governing the response in the rotating
frame is

and I, are components of the spin angular momen-
tum operator in NMR or fictitious spin operators
in coherent optics. In general, V may include
any other interactions or imperfections in the
radiation. For the problem of broadband inver-
sion, we take V =b,aI„where hg) is the differ-
ence between the radiation frequency and the
transition frequency, commonly called the reso-
nance offset. The evolution of the system during
the pulse sequence is then dictated by the propa-
gator U(t), given by

U(t) =T exp[-i f'rlt'SC(t')]

Here T is the Dyson time-ordering operator. '
The usual initial equilibrium condition of the

system is described by a density operator pro-
portional to I,. If the pulse sequence has a total
duration of ~, the final condition is pz =U(T)I,U(v)

Flipping a nucleus in NMR or completely exchang-
ing the ground- and excited-state populations in
an optical two-level system corresponds to ob-
taining a final condition of pz = -I,. Both Kp and
V act simultaneously to bring about the evolution
from I, to p&, as shown in Eq. (3). However, we
can separate the resonance offset from the pure
radiation interaction by rewriting the propagator
as follows:

U(t) = T exp(- i f 'dt' X', ) T exp[- i f ' dt' T'(t')],

(4)

l.e. ,

v(i) =x, +v,

V, =(u,'[I„cos(p(t) +I, sing(t)].

(l)

(2)

U(t) = U, (t)U„(t),

v(i) = U, (&)-'vU, (i). (6)

Kp represents the interaction of the system with
the radiation, where &o,

' and q(t) are respective-
ly the amplitude and phase of the radiation (47y'

is v8 in coherent optics or yH, in NMR. I„,I, ,

In light of Eq. (5), the evolution of the system
from I, to p& appears in two steps. First, the
presence of V causes a transformation from I,
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to an intermediate condition p; =Uv(7)I, U„(7) '.
Then U, (T), which would be the propagator for
the pulse sequence in the absence of V, takes p,.
to p~. The division of the overall evolution into
two steps forms the basis for the present ap-
proach to the inversion problem.

By definition, all inverting sequences satisfy
the following equation:

Uo(7)I, UO(T) '= —I, . (7)

Different sequences have different U„(T)opera-
tors, however. For an inverting sequence with
U (vr) = 1, we would have identically p, =I„the
sequence would then give perfect inversion even
in the presence of an arbitrarily large resonance
offset, or over an infinite bandwidth. In general,
though, we expect to achieve good inversion only
over a finite bandwidth. We therefore would like
to express the effect of the presence of the reso-
nance offset as a power series in hc.~. This can
be accomplished by making a Magnus expan-

sion" " of Uv(~):

t'"=~ '-I 'df t'(f), (9)' 0

V "=—(i, 2w) f df, t 'dt, [l~(t,), P(r, )]. (10)

The term V~" in the Magnus expansion is propor-
tional to ~+"". I call an inverting sequence
broadband to Nth order if V " =0 for 0 ~ n- N.
As X becomes larger, Uv(~) ~ 1 for increasingly
large resonance offsets. Consequently we should
see good inversion over an increasingly large
bandwidth.

So far, the treatment of broadband inversion
has been largely formal. However, it leads to a
definite procedure for the derivation of pulse se-
quences that are broadband to any desired order

¹ The problem is to find the specific phase func-
tion q(t) in Eq. (2). During a sequence of m puls-
es, y(I) equals a constant y; during the ith time
interval, where 1& i ~ m. The ith time interval
has a duration v, . U, (f) is then a product of rota-
tion operators about axes given by the y, . For
example, during the second pulse, U, (t) is

Uo(t) = exp(-iu!, (I, coscp, +I,, sing, )(t —T,)) exp{

V(f) may then be calculated in terms of trigono-
metric functions of the 2n~ variables y,. and T, ,
according to Eq. (6). In turn, the terms in the
Magnus expansion are functions of these 2pyg vari-
ables, as in Eqs. (9) and (10). The task of find-
ing a pulse sequence then reduces to the problem
of solving the N+ 1 equations V " = 0 for 0- $$ N
in addition to Eq. (7). All of the equations, each
of which has I„,I„andI, components, involve
the variables y; and w, . If we make yy large
enough, there will be a simultaneous solution,
i.e. , the desired pulse sequence. In principle,
the method may be applied to any order, although
in practice the equations are sufficiently compli-
cated for N&0 that they are solved by computer.

In Fig. I, I show computer simulations of the
population inversion W as a function of 4~.,~~,'
for two sequences derived in the above manner,
as well as for a simple 71 pulse. Pulse sequences
are described by the notation

(~,)„,. . . (~,),,. . . . (~.), ,

where 0; =~,w, '. W is defined by

tV = —Tr (I.p, )/Tr (I,'). (12)

The three-pulse sequence in Fig. 1 has V "=0
and has been derived earlier by a geometric ap-
proach which is not easily extended to the deriva-

—iu&, '(I„cosy,+I, sing, )~,].

! tion of higher-order sequences. The seven-8

pulse sequence in Fig. 1 has both V ' =0 and V '
=0. In accordance with the present theory, the
inversion bandwidth increases as successive
terms in Eq. (8) are made to vanish.

It should be stressed that the increased inver-
sion bandwidth of the pulse sequences in Fig. 1
does not result from an increase in the width of
the Fourier spectra. of the sequences themselves.
In a highly nonlinear process such as coherent
population inversion, there is no simple connec-
tion between the Fourier spectrum of the excita-
tion and the spectrum of the response of the sys-
tem.

The approach outlined above can be extended to
the design of pulse sequences that overcome a,

second obstacle to coherent population inversion,
namely the existence of inhomogeneity in the radi-
ation amplitude. Radiation inhomogeneity arises
from nonuniform laser-beam profiles in coherent
optics or from the finite size of the excitation
coil in NMR. This problem has also been treated
by a geometric approach. " To treat radiation in-
homogeneity with the present method we need on-
ly take V =5+,[I„coscp(t)+I,, sincp(t)] in Eq. (1),
where 5w, is the deviation of the radiation ampli-
tude from its nominal value w, . Then the Mag-
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FIG. 1. Population inversion vs relative resonance
offset for a magnetic nucleus in NMR or two-level
optical system. The results of computer simulations
are shown for the inversion produced by a 7t pulse
(dashed line), a (m/2) 0(3n /2) y&(7t./2) 0 sequence (dotted
line) and a (1 8677r) 0(1~ 3677t)„(0.056m) ~ (2(0.4117t') 3~/2-
(0.0567t)„/2(1.3677|)„(1.8677t) o sequence (solid line) . The
effect of a resonance offset on the inversion vanishes
to zeroth order in our theory for the three-pulse se-
quence and to first order for the seven-pulse sequence.
Because of the symmetry of the sequences, the inver-
sion is independent of the sign of the offset.

nus expansion of Uv(~) becomes a power series in
5w, . The theory is the same in all other respects.
In Fig. 2, we show W as a function of 5w, /m, ' for
a, three-pulse sequence with V =0 as well as
for a m pulse.

Pulse sequences that bring the system to a final
condition other than a population inversion may
be constructed by the sa.me method. For example,
under the sequence (w)„,(w/2)„»(w)„„the system
evolves from equilibrium to a final condition of

pf =I, independent of resonance offset to zeroth
order. This is the broadband counterpart of a co-
herent w/2 pulse.

A further application of the theory that is of pa,r-
ticula, r importance in NMR is the construction of
pulse sequences for population inversion in the
presence of dipolar or quadrupolar couplings. If
V is a. dipolar or quadrupolar coupling Ha, milto-
nian, the sequence ( /4w), ( )„w,( /2w), ( )„w„(/4w), is
an inverting sequence with 4' "= 0. The sequence
(w/4), (3w/4)„(&w!4)„,(w/4)„» creates a final con-
dition of pf =I„andha.s V '=0. The details of
such a,pplications will be presented in a full paper.
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FIG. 2. Population inversion vs relative deviation
in radiation amplitude. The results of computer simula-
tions are shown for the inversion produced by a ~ pulse
(dashed line) and a (rr) 0(n),„~3(~)0 sequence (solid line).
The effect of deviations in the radiation amplitude on the
inversion vanishes to zeroth order for the three-pulse
sequence.
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