
VOLUME 51, NUMBER 9 PHYSICAL REVIEW LETTERS 29 AUG U sT 1983

Long-Range Behavior of Nuclear Forces as a Manifestation of Supersymmetry in Nature
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It is shown that each isospin channel in the long-range approximation to the nucleon-
nucleon potential (one-pion-exchange potential) corresponds to a realization of a quantum
mechanical super symmetric Hamiltonian. A functional relation between the coordinate-
dependent coefficients of the spin-spin and tensor parts of the interaction predicted by
supersymmetry is exactly fulfilled.
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Since its discovery, ' supersymmetry has at-
tracted a great deal of attention because, among
other useful properties, it could ultimately pro-
vide a natural mechanism for unifying gravity
with the strong, electromagnetic, and weak inter-
actions. This new kind of symmetry joins bosons
and fermions in irreducible multiplets of the
graded Poincard' group. If supersymmetry has
something to do with nature, it must be broken,
because bosons and fermions with the same mass
are not observed. Recently, a lot of effort has
been spent in building realistic models of strong,
electromagnetic, and weak interactions which in-
corporate supersymmetry. ' The preferred way
of breaking such symmetry is via the spontaneous
symmetry breaking which does not spoil the high-
energy behavior which is usually improved for
supersymmetric theories. The predictions of al-
most all contending models remain to be tested
experimentally and some of them are at the en-
ergy level of currently existing high-energy ac-
celerators. Nevertheless, we might have al-
ready observed supersymmetry in nature through
some applications of broken supersymmetry in
nuclear physics which have predicted, and con-
firmed, unexpected correlations among energy
levels corresponding to even-even and even-odd
nuclei. '

At the level of a Lagrangian which describes
a physical system, supersymmetry manifests it-
self as a set of transformation rules which mix
bosonic and fermionic fields and which leave the
action invariant. In other words, the Lagrangian
changes at most by a total divergence under such
transformations. In this note we consider a
supersymmetric field theory where the fields de-
pend only on time, that is, we deal with super-
symmetric quantum mechanics. One -dimensional
quantum mechanical supersymmetric models
were first discussed by Witten4 and further in-

vestigated by Salomonson and van Holten' and
Cooper and Freedman, ' mainly with relation to
the mechanisms of spontaneous symmetry break-
ing. Here we discuss an extension to three di-
mensions of such models which will allow us to
interpret the long-range potential between two
nucleons as a manifestation of supersymmetry
in nature.

The essential idea underlying any quantum
mechanical supersymmetric model is that the
Hamiltonian of the system can be written as

where Q and Qt are basically fermionic (anti-
commuting} operators which generate the super-
symmetry transformations. The expression (1)
is a manifestation of the graded extension of the
Poincard group (B =P'} and is the quantum mech-
anical analog of the fact that supersymmetry
transformations are the "square root" of (time)
translations. '

Let us consider three Hermitian position opera-
tors x, (k =1, 2, 3), together with their canonical
momenta p„, which satisfy the usual commuta-
tion relations of quantum mechanics. These
variables represent the bosonic degrees of free-
dom of the model. The fermionic degrees of
freedom are provided by non-Uermitian Clifford
operators &„and &„ which satisfy the algebra
(ri = 1)

(2)

Also, any bosonic variable commutes with any
fermionic variable. We remind the reader that
the variables ~, appear naturally when quantum
mechanics is formulated via the Schwinger action
principle. They constitute what Schwinger calls
variables of the second kind, and their algebraic
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properties, together with the properties of their
elementary variations &g», can be consistently
derived from the action principle. '

In terms of the dynamical variables defined
above we simply extend the one-dimensional con-
struction of the supersymmetry generators
(supercharges) to

Q = (p» - i Vx») $»,

Q =(p» +i Vx») g»

where we have only added a summation over the
new degrees of freedom. The real function V is
the so-called superpotential and depends only on
r=(x,x, ) '. We assume that the indices k=1, 2,
3 have vectorial character under three-dimen-
sional rotations in such a way that the super-
charges together with the Hamiltonian are tota-
tionally invariant. In superspace language the
choice {3)for the supersymmetry generators
means that we keep the supercoordinates I,, 0, 0*
and only attach a vector index k to the superfield.

The algebra of the dynamical variables allows
us to show that Q' = (Q t)' = 0 which together with
the definition (1) of the Hamiltonian implies

[Q, H]=[Q', Hj=o. (4)

In other words, the transformations of the dy-
namical variables generated by Q and Q are
symmetries of the system. The infinitesimal
supersymmetry transformations among the bos-
onic and fermionic coordinates are calculated
according to the usual prescription 5X = i [G, X]
for the change of any operator X under a trans-
formation generated by G. Here the generator
is G= e*Q +Qe, where e is a complex infinites-
imal Grassmann parameter which commutes
(anticommutes) with all bosonic (fermionic) de-
grees of freedom. We do not bother to write
explicitly such transformations because they are
just the direct generalization of the one-dimen-
sional situation. 4 Calculation of the Hamiltonian
according to Eqs. (1) and (3}finally leads to

B=-.'9'+r'V'+V[C. , C, '] V'{-. , / ) [C„C,']), (5)

where V'=dV(r)/dr. In order to look for a physi-
cal interpretation of the supersymmetric Hamil-
tonian (5) we need an explicit realization of the
algebra (2). To this end it is more convenient
to rewrite the Clifford variables &, in terms of
Hermitian operators a„and b, in such a way that
&»

= —,
' W2(a» +ib„}. Such Hermitian operators

satisfy the algebra

{a„a,j =jb», b, ) =5

(a„,b, ]=o,
(6)

(7)

a=(1/v 2}Ae o "i
b = (1/v 2)BS o ~'~ (8)

Here v ' and a 2 are two sets of independent
Pauli matrices: [o„"',o, ")]=0. The operators
A and 8 are Hermitian and satisfy

A2 =B2=]

ja, Bj =o.
(9)

(10}

Condition (9) is imposed in order to satisfy (6)

which readily imply the relations (2}. Equation
(6} suggests a realization of the operators a and

b in terms of Pauli spin matrices. The simple
assumption that a and b act on different spaces
together with Eq. (7) leads to the following Ansatz
for the operators:

with the representation (8) while condition (10)
accounts directly for (7).

Up to this stage we can say that our model
Hamiltonian (5) describes the supersymmetric
interaction of two spin--,' particles {with spin
operators —,

' u "and —,
' v ", respectively) and

whose relative coordinates and momenta are
represented by the operators x and p, respec-
tively. Also, such particles possess an internal
quantum-number space related to the operators
A and B. In order to elucidate the meaning of
such quantum numbers we now look for a repre-
sentation of these operators.

Having in mind that we are dealing with a two-
particle system, we take the representation

(~) (3~ (2)

gg
—

&
(j) @1(2)

where p "and p "are another two sets of inde-
pendent Pauli matrices which operate in the in-
ternal space of each particle, respectively. The
realization (ll) obviously satisfies the require-
ments (9) and (10) together with the Hermiticity
condition. We are now saying that each particle
has an extra internal quantum number C ' (a=1,
2), which arises from the internal operators and
which we choose to be the eigenvalues +1 of p, ').
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In terms of the explicit realization that we have found for the Clifford algebra (2), the Hamiltonian
(S) can finally be written as

H =-,'(p'+«'V'+C[ Vo "~ &x "+rV'(o'(' .r)(&x ) ~ r")])

Here we have dropped the direct product notation
and «=r/«. The operator C is the only remnant
left from the internal space. It is given by C

p3 8 jib and can be effectively writte n

as the product of the internal charges: C =C"C ".
Let us remark that the Hamiltonian (12) exhibits
central, spin-spin, and tensor interactions with
the respective coefficients highly correlated in
terms of the superpotential V(r} as a consequence
of the underlying supersymmetry of the model.

A complete set of quantum numbers for this
two-particle system is given by the energy, the
total angular momentum squared J', the z com-
ponent of the total angular momentum 4„ the
total spin squared S= 0, 1, the parity P = (-1)',
and the product of the individual internal charges
C =C ' C . A direct calculation shows that the
supersymmetry generators Q and Q" commute
with J (hence in particular with J' and J,), which
is just the consequence of the supercharges being
invariant under rotations. It is easy to verify

! also that the action of Q and Q
~ on the two-par-

ticle wave function has the effect of changing P
—-P and C --C. The action of the supersym-
metry generators on the total spin of the system
is a bit more subtle: Either they annihilate the
wave function or they act as shifting operators
that change the total spin of the system by a step
of one unit. Further details of the action of the
operators Q and Q upon the wave functions of
the system can be found in Hernandez. '

Now we come to the main point of this work,
which is to show that the long-range nucleon-
nucleon potential in nuclear forces is just a par-
ticular realization of the supersymmetric Hamil-
tonian (12). The nucleon-nucleon potential is
fairly complicated at short and medium distance
(«&2 fm) because of many-particle effects to-
gether with the fact that many different types of
mesons and vector bosons are exchanged between
the nucleons. Nevertheless, the long-range be-
havior of the potential (r &3 fm) is due only to
pion exchange and has the well established form"

(i3)

sent form our supersym-
metric model does not include isospin in a nat-
ural way, and any further comparison between
the two potentials (12) and (13) will be made for
each individual isospin channel: &—= (& ' ~

&
'

)
3y 1y

The next step is to identify the coefficients of
e ' .v ~ and (o ' ~ «)(v 2 ~ r) defined in (12) in
terms of the explicit functions (14) and to verify
whether or not the relations imposed by super-
symmetry are satisfied. A direct comparison
shows that

S

(i4}

Here x = pr, p. is the pion mass, and gis the
pion-nucleon coupling constant. In Eq. (13) the
plus sign in front of the right-hand side refers
to the potential appropriate to nucleon-nucleon
(or antinucleon-antinucleon) interactions, while
the minus sign describes the potential for nucle-
on-antinucleon inter actions. "

Now we turn to the comparison of the one-pion
exchange potential (OPEP) given in Eq. (13) with
the corresponding potential arising from the
supersymmetric Hamiltonian (12). In the first
place we notice that the OPEP really requires
two different internal spaces; one related to the
leptonic quantum number and the other corres-
ponding to the isospin quantum number. The
multiplicative structure of the operator C ap-
pearing in (12) leads us to the identification of
each charge C~' with the leptonic number of

—,'v= g(v, —v, ),
rd( ,'V)/dr=3$vr, -

(is)

(i6)
and the real challenge is to determine whether
the last relation, implied by supersymmetry, is
true. In terms of the definition (15), relation
(16) can be written as

(17)rd( Vz —Vr)/d«=3 Vr .
A direct calculation which uses the explicit ex-
pressions (14) shows that the equality (17) is in-
deed satisfied exactly, which comes out as a

V (r) p ( g (1), g (2)}(V («) o (1) ~ o (2) + [3(()(1),r)(o (2), «) o (1),o (2) j V (r))

where &
~'~ and &

~'~ refer to each nucleon isospin.
The functions V~ and V~ are given by (K=c =1) each nucleon. In its pre
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rather remarkable result.
When comparing the potentials in Eels. (12) and

(13) we are still left with the central term 2r' V'
which is not present in the OPEP. Nevertheless,
the choice (15) for the superpotential makes the
central term proportional to e '" which is cer-
tainly negligible when compared with the other
terms in the potential which go as e-" in the long-
range approximation. In this sense, the term
—,
' r' V'represents the onset of two-pion exchange
processes. In the approach presented here super-
symmetry is broken, as can be seen because the
full nucleon-nucleon potential can bind the deu-
teron and then cannot be positive definite as im-
plied by (1).

It would be interesting to understand the possi-
ble implications of the properties exhibitied here
from the field theoretical viewpoint because, if
the prediction of relation (17) is not pure coinci-
dence, this etluality is saying that supersym-
metry is a good symmetry at very low energies,
which is not what we expect from the standard
approach to the subject.
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