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Topologically stable solitonic solutions to Skyrme's chiral-invariant Lagrangian have
been obtained numerically. The single parameter in these solutions has been determined
with the Goldberger-Treiman relation. The identification of these objects with baryons
leads to sensible statements regarding the sizes and energies of baryons as well as the
two- and three-body interactions between baryons at zero separation.

PACS numbers: 12.35.Eq, 11.30.Hd, 13.75.Cs, 21.30.+y

Twenty years ago Skyrme' proposed a model in
which low-lying baryons emerge from a nonlinear
meson field theory as topologically twisted con-
figurations or solitons. The topological charge
or winding number was identified with the baryon
charge. This model has recently been revived"
in the context of quantum chromodynamics (QCD).
In particular, Witten' has established an intriguing
connection between Skyrme's soliton and baryons
in large-Ne (where Nc is the number of colors)
QCD.

Suppose that large Ne QCD-confines quarks.
Then, in this limit, ' QCD may be approximated
at low energies by a weakly coupled field theory
of mesons described by effective local fields with
effective local interactions. Weakly coupled field
theories sometimes possess solitonlike states.
Witten has argued' that, in the large-N~ limit,
baryon masses are proportional to Nc when viewed
in terms of the planar diagrams of QCD or to f,'
when analyzed in an effective field theory (e.g. ,
a nonlinear chiral Lagrangian). Thus, the identi-
fication of Skyrme solitons with baryons seems
consistent with QCD, at least a low energies.
That the Skyrme soliton is indeed a fermion has
been proven by several authors. " In particular,
the connection between the topological charge and
the baryon charge has been shown to be unique
with the number of colors, N&, playing a crucial
role. Further progress in this direction is re-
ported in the preceding Letter, ' where it is shown
that the baryon charge carried by the soliton field
uniquely determines the way to marry the Skyrme
soliton with the phenomenologically successful
quark-bag picture.

The purpose of this note is to explore the pos-
sibility that the Skyrme soliton provides a satis-

!
factory description of low-lying baryons and to

see how far one can go in understanding low-en-
ergy nucleon and nuclear dynamics without invok-
ing explicit quark degrees of freedom. For this,
we will consider the Skyrme Lagrangian appro-
priate for the chiral SU(2) SU(2) group,

g = —,f, 'Tr(—L&L&) ——,'e'Tr{[L&,L„]];
I.„=U' a„tJ,

U=f, '[o(x)+is n(x)], U U =1,
where f, is the pion decay constant, e is a con-
stant to be determined, cr is the scalar meson
field, and ~ is the triplet Goldstone boson (i.e.,
pion) field. Although the quadratic term in Eq.
(1) cannot support a topological soliton by itself
for spatial dimension three, there are solitons"'
when a quartic term is added as in Eq. (1). Fol-
lowing Skyrme, we make the IsedgehoI, A»sate,

U(r) = exp [iT ~ rg(r)]

This corresponds to a mapping of the real-space
three-sphere (S') onto the internal-symmetry
three-sphere (S') for a configuration U which ap-
proaches a constant at spatial infinity. This map-
ping represents the third homotopy group n, ( S)

-Z, the group of additive integers, labeled by an
integer which is identified with the baryon num-
ber B ""

T. he large-Nc expansion of QCD sug-
gests that baryons should emerge as solutions to
the classical equation of motion of Eq. (1) and the
low-energy theorems of current algebra from
tree diagrams for the same Lagrangian when ap-
propriately fluctuated around the (soliton) back-
ground field.

It is convenient to write the energy of the soli-
ton corresponding to the Lagrangian of Eq. (1) in
terms of the variable v defined as 1 ( n/rr, ), where
ro is an arbitrary (and redundant) scale factor.
This yields

E =2' „'r, f
' dre'(9'+2 sin'8)+ (32&re'/ro) f d7 e 'sin'8(8'+-, ' sin'0). (2)
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The chiral angle, 8(T), may be found by minimizing the energy of the soliton. This leads to the Euler
equation

8 (1+Ac "sin'8) + 8(1-Ae "sin'9) —sin29 ( 1 —-'Ae "(8'—sin'9) }= 0, (3

E = 8vfJ e! (A "'I "o+A "'I "0) (5)

where the terms in Eq. (5) correspond to the
terms in Eq. (2). The term in brackets is inde-
pendent of A, . Note also that Eq. (5) does not de-
pend on r, . However, by regarding Eq. (2) as a
function of ro for fixed e„ it is apparent that the
two terms in the brackets of Eq. (5) must be
equal. This is the content of Derrick's virial
theorem. ' This provides an appealing test of nu-
merical results: The difference between these
terms is linear in the difference between an ap-
proximate 8(r) and the exact function; the energy
is quadratic in this difference.

Equation (3) is well suited to numerical solu-
tion through the replacement of 0 and 6 by finite-

where we have introduced the quantity A defined
as 16m'/f „'r,'. In the limit of large positive r,
Eq. (3) indicates that 9(T) equals a exp(-2T). This
a.symptotic form is also obtained for the ordinary
hedgehog in which e' and A are zero. ' In the lim-
it of large negative r, 8(r) equals Br+ca exp'
where B is an integer which can be identified with
the baryon number. (The parameters a and a are
to be determined by the solution of the Euler
equation. ) In this limit the ordinary hedgehog
leads to a chiral angle diverging as exp(- r).
This divergence is related to the instability of
the ordinary hedgehog with respect to scale trans-
formations. "

The explicit r dependence of Eq. (3) indicates
that solutions for different values of A. are relat-
ed by a trivial displacement in 7:

9„(r)= 8„(r—2 ln(A/A, )).

This leads to considerable numerical simplifica-
tion. Equation (4) also permits us to rewrite the
energy as

fhh
f„"A,r' 4wp, '(f, /p, )r' (6)

Using the values f, = 93 MeV, p, =140 MeV, f»
= 1.8, and the value A,/e =0.928 obtained from
our B = 1 solution, we find c'= 0.005 52 which is
in reasonable agreement with the limits obtained
from p p scattering. ' This value of c' was used
to obtain the energies in Table I. Effects of the
small empirical uncertainty in f„(0.1%) can be
estimated from Eqs. (5) and (6) but are far small-

! difference expressions. Initial values of the as-
ymptotic parameters a and n were guessed, and
the resulting quadratic equation solved to inte-
grate Eq. (3) in (or out) to the point at which 8

equals (B —2)n. The parameters a and a were
adjusted to yield continuity in 0 and 9 at this point.
Sufficient care was taken to ensure the equa. lity
of the terms in Eq. (5) to 0.2% (with substantially
greater precision in their sum as noted above).
From the resulting monotonic behavior of both
the interior and the exterior derivatives of 0 at
the matching point, the solution for a given inte-
ger, B, would appear to be unique. This proce-
dure is extremely simple and solutions were read-
ily obtained with a pocket calculator. For B=1
the releva. nt parameters are a = 80.8 and n = —0.328
for A, =75. Results for B=1-3a.re given in Ta-
ble I.

In dependent knowledge of e' (e.g. , from vv

scattering) would enable us to determine the en-
ergy a,nd size of the Skyrme soliton for ea,ch va.l-
ue of B. Instead, we employ the Goldberger-
Treiman relation which relates the chiral angle,
8(r), and the pion field for large r This. relation,
familiar from the ordinary hedgehog, is unal-
tered by the additional quartic term in Eq. (1)
and assumes the form

TABLE I. Energies and sizes of Skyrme solitons with B =1—3 for &

=0.00552. The integrals of Eq. (5) are also shown as a check of numeri-
cal accuracy.

~ lmS Ag/A & /2 F.~ (GeV) z'/a ='

B=1
B=2
B=3

0.48
0.68
0.81

4.1009
12.255
24.288

4.1031
12.221
24.329

1.42
4.25
8.44

1
2.983
5.926
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er than intrinsic uncertainties in the model which
are much harder to estimate. Note that the ener-
gy ratios quoted in Table I are independent of f„
and e. Once the Goldberger- Treiman relation
has been used to establish the asymptotic form
of 8(r), the Skyrme soliton is uniquely deter
mined. In this light the energy of 1.4 GeV ob-
tained for the B = 1 Skyrme soliton seems a rea-
sonable approximation to that combination of nu-
cleon and 4(1232) nucleon isobar which the hedge-
hog is presumed to describe in chiral bag models.

Following Skyrme, one can make a qualitative
estimate of the interaction between two B=1 soli-
tons at zero separation as

0.2 0.4 0.6 0.8 I.O

1 s;n2g&dg&
21T' r' dr ' (9)

Equation (9) is a perfect differential so that the
baryon number, defined as the integral of p~, is
precisely B. Figure 1 shows p~, (r) along with
the related 8 '(r). Figure 1 also shows 8»(r)
obtained from the (unstable) hedgehog solution
with e'=0 and the same asymptotic normalization.
With use of Eq. (9) it is easy to calculate the rms
baryon number radius. Results are shown in Ta-
ble I. Again, specifying e fixes the rms radii
uniquely so that the value of 0.48 fm obtained for
B = 1 does not seem unreasonable.

Finally, it is interesting to consider the ener-
gy of the B= 1 state in a soliton bag model. ' We
do this rather arbitrarily by joining the present
soliton field to a quark bag considered as a de-
fect in the soliton field at y =0.40 fm where 8
is precisely n/2 With this b.ag radius the quark
kinetic energy is zero' and the energy of the soli-
ton ba.g consists only of the energy of Eq. (2)

V, (0) =~'='-2E'='.

From Table I we see that V, (0) is essentially
E ' in remarkable agreement with Skyrme's ear-
ly estimate. A similar estimate can be provided
for the three-body interaction between three 8 = 1
solitons at a point:

V~(0, 0) =E —3E ' —3V2(0).

The results of Table I indicate that V, (0, 0) is ex-
tremely small (on the order of —0.025E ').
Since chiral Lagrangians contain a variety of
many-body forces, ' it was not obvious that the
present model would lead to the dominance of
two-body forces familiar from low-energy nucle-
ar physics. The results indicate that it does.

Our numerical solutions to Eq. (3) also permit
determination of the baryon number density""

r (F)
FIG. 1. The baryon density, p~(z), in arbitrary units

and the chiral angle, g (y), obtained for g =0.00552
and p =1. The chiral angle for the ordinary hedgehog,
phh(z), with the same asymptotic normalization is also
shown.

from the region 8 & v/2 and the usual volume en-
ergy of the bag, V» . Picking =1 fm, the
present solution yields an energy of 800 MeV for
the B= 1 state. (In this case precisely one-half
of the baryon number is to be associated with the
quarks; the other half is associated with the soli-
ton. ') Indeed, the present soliton solutions can
be used in any chiral bag calculation in place of
the unstable solutions with e'=0 previously em-
ployed. This instability, suggested by the factor
of

~
e~ appearing in Eq. (5), forces the bag to play

a dual role describing the physics of a quark
phase and also curing a mathematical problem of
the e =0 soliton in the limit of zero bag radius.
It would seem reasonable to eliminate the latter
role by employing the stable Skyrme soliton.

We have seen that setting e' with the Goldberg-
er-Treiman relation gives a unique prediction for
the energy and size of the B = 1 Skyrme soliton
which is not unreasonable given the properties of
nucleons and nucleon isobars. The ease with
which these results were obtained suggests that
Eq. (3) provides a formally stable and convenient
description of the mesonic region in chiral bag
models. The energy of the B=2 Skyrme soliton
leads to a qualitatively sensible statement regard-
ing the baryon-baryon interaction at zero separa-
tion and indicates a soft repulsion of about one
baryon mass in magnitude. " This suggests that
the old-fashioned wisdom" regarding the nucleon-
nucleon interaction, as contained in chiral La-
grangians such as Eq. (1), may be adequate to de-
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scribe all the qualitative features of the low-ener-
gy nucleon-nucleon interaction. We can imagine
a 8 = 2 solution in which the defects are separat-
ed by a large distance. In such a perturbative
limit the usual one-pion-exchange interaction will
appear. As the defects are moved closer, one
expects to find the sigma meson of chiral models
which provides the intermediate-range attraction
common to all phenomenological models of the
nucleon-nucleon interaction. At shorter distanc-
es, the nonlinear nature of the model dominates
and, as we have seen, short-range repulsion re-
sults. The shortcomings in earlier models would
appear to lie merely in their failure to provide
an adequate nonlinear realization of these ideas
at short distances. From the present results
(not least the baryon density) it seems that the
Skyrme soliton is describing much of the short-
distance physics usually associated with a quark
bag. Although we do not question the existence
of a quark phase, it is not clear to what extent,
if any, the limited needs of low-energy nuclear
physics require its explicit inclusion.
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