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Solitary Waves as Fixed Points of Infinite-Dimensional Maps in an Optical
Bistable Ring Cavity
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Phase-locked solitary waves are shown to be the stable fixed points of an infinite-di-
mensional map obtained from a bistable optical ring cavity.
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The ultimate goal of these studies is to find
methods for analyzing nonlinear systems which
exhibit coherent spatial structure and temporal
chaos and give every indication of lying on low-
dimensional chaotic attractors. Efforts to date
have fol.lowed the prescription of projecting the
field variable into some finite-dimensional. Ga-
lerkin basis thereby obtaining a finite set of non-
linear ordinary differential. equations. These
equations are then analyzed by direct integration
or by converting the continuous time variable into
appropriate discrete steps and obtaining a cor-
responding iterative map. ' The troubl. e with the
approach is that the truncation associated with
the projection is rarely justified and the outcome
is often sensitive to the dimension of the basis
chosen to approximate the fiel.d variable. A key
step, therefore, in the analysis of these situa-
tions is to find an appropriate basis in which the
original inf inite-dimensional system is almost
seyarab1. e and in which a few modes can capture
its essentia1. low-dimensional character. So1.itary
waves and solitons, although traditionally asso-
ciated with integrable systems and not with the
kind of chaotic dynamics often encountered in
maps, a,re prime candidates for such a basis.
Certainly this is a reasonable hope when the
physics in question can be essential. ly model. ed by
an integrable system under external. influences.
One would then expect there to be certain paral-
l.els to the breakup of Ko1.mogorov-Arnold-Moser
surfaces and homoclinic orbits in finite-dimen-
sional. systems such as the driven damped pendu-
lum. '

In this Letter we make a start in the right di-
rection by showing that solitary waves can be the
fixed points of infinite-dimensional maps. In pa, r-
ticular, our approach allows us to explain the
spatial rings found by Moloney and Gibbs' in
their numerical model of a bistable optical ring
cavity. We anticipate that in wider parameter
ranges we wil. l find that these rings exhibit tem-
poral. chaos whil. e yet maintaining a spatially co-

herent structure.
Consider Fig. 1(a). A unidirectional polarized

input laser beam, propagating in the z direction,
with an input profi1.e which is Gaussian in one
transverse direction, enters a nonlinear medium
at point H, z = 0 at t = 0. Af ter propagating through
the medium to point I, z = I.„ the beam is then
reflected through four mirrors (two of which re-
duce its intensity) so as to re-enter the nonlinear
medium at time t, =(L,+L,)/c, and reinforce the
original pump field. The signal. continues to cir-
culate around the cavity and our goal is to pre-
dict the output after many passes.

The input laser beam signal is E (x,z, t)
=2Re(A(x) exp[f'(kz —~t)]j r, k = ~/c, where'(x)
has a prescribed shape. In the nonl. inear medium

E(x,z, t) =2Re(B(x,z, t) exp[i(kz —cot)]}r, (1)

where the envelope B satisfies

BB 1 BB ~e 1+i' i 1n2
ez c Bt 2 1+62+BB* 4mn+, Ii &x2

(2)

Here o.o is the linear absorption yer unit 1.ength,
4 is the laser-atom detuning normalized to the
diyol. e decay width, and I', which we assume to be
large, is the Fresnel number measuring the
transverse diffraction of the beam. To describe
the evolution of the fiel.d through the nonlinear
medium by Eq. (2), we have assumed (see Ref. 3
for details) that (a) the nonlinear medium inver-
sion and dipole relaxation times are short com-
pared to the cavity roundtrip time t, and that (b)
there is no significant steepening in the propaga-
tion direction. In the 1.inear return medium IJKII,
we simply assume that the field satisfies the line-
ar wave equation,

E(x,z =L, t) = E(x,z =Li, t -I 2/c), L =Li+L2.
The infinite-dimensional may is obtained as

follows. Consider the field E(x, O, t) at z =0 in
the various time intervals I„, (n —1)t,& t&nt, .
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the dependence of 8 on t by stating in which in-
terval. it has been generated. On the nth pass
the initial condition at z = 0 is

E(x, O, t)

=2r Re[a TA(x)+RB„,(x,z =L,)e "~]e ' '

and so we can write

B„(x,z = 0) =v TA(x)+RB„,(x,z =L,,)e*", (3)

B,= 0. Our task is to determine the limit of B„(x,
z = 0) as n —~ if it exists. It is useful to introduce
the new variables
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FIG. 1. (a) Unidirectional passive ring cavity con-
taining a nonlinear (two-level atom) saturable medium
of length L~. (b) Schematic of the plane-wave bistable
loop obtained from the steady-state solution (fixed point)
of Eq. (7), for 8=0.9, p =2, andkL=0. 4 rad. When
transverse effects are included tsolve Eq. (5) with
boundary condition (6) and E=200] stationary N-solitary-
wave trains appear on the high-transmission branch at
equal increments of g(0), the peak input Gaussian field
amplitude (N= 1,7 are indicated by upward arrows).
The same parameter values are used to generate all
subsequent results. (c) Initiation of the seven-solitary-
wave train from the sharp gradients on the outer edges
of the transverse laser beam (intracavity field on the
23rd pass). The final steady-state transverse pulses
are confined to the interval Q+,x ) =(0.61,—0.61). The
lower trace in this fi'gure shows the much broader
Gaussian profile after propagating through the nonlinear
medium once. (d) Steady-state seven-solitary-wave
train at g (0) =0.194 evolving from the transient in (c)
after 200 cavity passes.

For 0& t& to, E(x, O, t) = 28e[WTA(x)e '"']r. For
t,&t& 2t» E(x, O, t)=2Re[vTA(x)e ' ']r+RE(x, L»
t -L,/c). Here R is the reflection coefficient at
the mirrors atH, I(a large fraction R of the in-
tensity is reflected) and T the transmission co-
efficient. Observe that 8 is a function of t only
through T =t -z/c and Eq. (2) tells us how B
evolves as a function of s for fixed &. The de-
pendence of B on ~ is determined by the data at
z =0. ButA(x) is independent of t and therefore,
on the first pass, B is. Similarly in the nth in-
tervalI„, the envelope of e ' ' ate =0 is inde-
pendent of t. Therefore we can simply replace

1
G„(y,f) = B„~,L,—

whence (2) and (3) become

,BG„B~G„G„
&y' 1+2G„G„*

G „(y,0) =a(y)+Re" ~G „,(y,p),

(5)

(6)

=a+Rg„exp[tkL —t(p/2)(1+2lg„l ') l. (7)

Its fixed points as functions of the input field a
are shown in Fig. 1(b). For a range of a and P
the map exhibits bistabl. e behavior. As the input
ampl. itude is increased past the point a„ the out-
put field jumps to the upper branch at U. [As the

n & 1, G, = 0. In (5), we have omitted the attenua-
tion and other terms of order 1/b. as they are as-
sumed to be small ~ Equation (6), which acts as
the initial data for the solution of (5) during the
vth pass through the nonlinear medium, is the
infinite-dimensional map of interest.

In order to understand the dynamics in the case
when f» 1 and the input transverse profile is
Gaussian-like, it is first necessary to under-
stand what happens when a(y) and therefore G are
independent of the transverse coordinate. This
is called the plane-wave case. Then the solution
of (5) is trivial and one finds

G (y p)=G (y 0)exp[ t(Ip/2$(lG (y 0)l)]

whereg(lGl)=(1+2lGl') . In this case (6) is a
one-dimensional compl. ex map from one member
of the sequence [G„(y,0) =g„]„,to the next:

76



VOLUME 51, NUMBER 2 PHYSICAL REVIEW LETTERS ll JUr.v 1/83

parameter ranges are broadened, a wide variety
of behavior is possible. For example, the graph
in Fig. 1(b) can have more than one S bend lead-
ing to multiple fixed points. A1.so for fixed a and
increasing P or vice versa, period doubling se-
quences leading to chaotic behavior are observed~;
but this is not the phenomenon we focus our at-
tention on here. ]

Now look at an input field whose transverse
profile is Gaussian-like. Iff» 1, then the effects
of diffraction are initia1. 1.y negl. igible and at each
y the beam behaves as if it were a uniform plane
wave at that amplitude. But, from Fig. 1(b), we
see that those points of the Gaussian profil. e for
which a(y) & a, will switch up to the upper branch
and those parts for which a(y)& a, will stay on the
lower branch. Therefore at x, where a(y, ) =a,
the derivative of the response field is very large.
At these locations, diffraction is important and
beginning at the edges x+ and x narrow pulses of
width bx =O(l/vf) are generated which eventuall, y
fi1.1 out the region between x and x, , and become
the steady-state response of the system. This in-
deed is the situation observed numerical. ly and
shown in Figs. 1(c) and 1(d)~ What we now show
is that these pu1.ses are the solitary waves of Eq.
(5). What is particularly new in this study is that
the solitary-wave parameters (amplitude and
phase) are not determined by initial. conditions
but by the stable fixed points of the map (6). We
develop a theory that predicts their values and
our theoretical. resul. ts are in excellent agree-
ment with the resu1, ts obtained by numerical ex-
periment. Further, the number of pulses is a
function of the transient shape real. ized after a
few passes [Fig. 1(c)] and is proportional to v'f
and the maximum input fie1,d amplitude.

Taking advantage of the symmetry in y, the so1.-
itary wave of (5) is

G, (y, l') ~P(A.y, X) exp[i(X2 —1)f/2+iy], (8)

where the shape P(&,X) satisfies (8 =Ay)

Pee-P+ (1/X.2)2P'/(1+ 2P2) = 0.

[ If we had used a Kerr nonlinearity obtained by
taking the small-P limit of (9), the last term in
(5) would be -G„+2G„'G„*and P =X sech(&), the
soliton of the nonlinear Schrodinger equation. ]
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We now sketch the basic ideas of our theory.
If the equation (5) of profile evolution in the non-
linear medium were indeed the nonlinear Schrod-
inger equation and therefore integrable, we could
decompose G„(y, 0) into its soliton and continu-
ous spectrum basis (in which basis the equation
is separable) and, using (6), find the soliton and
continuous spectrum parameters of the field en-
velope on the nth pass in terms of those on the
(n —1)st pass. This would give a representation
of the infinite-dimensional may in a separable
basis. In most cases, we expect the so1.iton con-
tent of the data to dominate that of the continuous
spectrum and therefore the map would naturall. y
reduce to a finite-dimensiona1. one. Further, if
the solitons were widely separated [ as the soli-
tary wave pulses of G are in Fig. 1(c)], then to
a good approximation, one cou1.d obtain a map
(X„»y„,) to (X„,y„) for each soliton individual. -
1.y.

Our problem with a saturable nonlinearity is
not integrable and we cannot separate the equation
in a soliton basis; nevertheless, we can ask what
sol, itary wave P(e, X„)e„'& would emerge on the
nth pass from the initial conditions

FIG. 2. (a) Comparison of the single-solitary-wave
shape (N= 1) at g(0) =0.1 predicted from the fixed-point
equation (10) (dashed line) with the numerical solution
of Eq. (5) (over 200 cavity passes) with boundary con-
dition (6) (solid line). The slight discrepancy in height
(-1.3%) may be due to the background radiation evident
in the full numerical solution but ignored in the fixed-
point equation, (b) The central peak of the seven-
solitary-wave train |see Fig. 1(d)] compared to the
shape predicted k y the fixed-point equation [e(0) =0.194].
The discrepancy in fit (-5%%u&) is consistent with perturba-
tive estimates of changes in shape due to interactions
with nearby solitary waves.

G„(y,0) =a(y)+RP(&, X„,) exp[iy„, + ikL, + (i/2)P(X„, ' —1)].
Expressing this idea mathematicaliy defines a map M from (X„„y„,) to (X„,y„). (The underlying as-
sumption, which is not necessary in the integrable case, is that the change D.„»5y„,on each pass is
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not too great. ) This Letter does not afford us the space to go into the mathematical analysis. This and
other details wil. l be given in a longer paper in preparation. The condition that M has a fixed point
(X,y) can be written

siny(X '9Pe+Pz, a(&p)) =R sintkL+~zp(X' —1)](X 'ePe+P~, P),
cosy(P, a(8/X)) =(1 R-co s[kL+ —2p(X2-1)])(P,P) . (10)

In (10), (P, Q)= f „P(&)Q(6)d6. This is the prin-
cipal analytic result of the Letter. We solve (10)
numerically for a number of cases with different
parameter values and compare. our predicted
solitary-wave shapes and amplitudes with those
obtained by numerical experi. ment. These re-
sults are summarized in Figs. 2(a) and 2(b).

%e emphasize that these solitary waves, which
are the transverse nonlinear normal modes of
the cavity, are the infinite-dimensional analogs
of the upper-branch plane-wave fixed points given
in Fig. 1(b). By analogy with that case and the
low-Fresnel-number results of Ref. 5, we expect
that, as the parameter ranges are broadened, a
rich variety of behavior will. occur. This should
include period doubling and other routes to states
of temporal chaos in which the solitary wave am-
plitudes flutter chaotically but in which states an
overall spatial coherence is maintained.
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