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Contractive States and the Standard Quantum Limit for Monitoring Free-Mass Positions
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The familiar minimum-uncertainty wave packets for masses are generalized in analogy
with the two-photon coherent states of the radiation field. The free evolution of a sub-
class of these states, the contractive states, leads to a narrowing of the position uncer-
tainty in contrast with the usual minimum-uncertainty wave packets. As a consequence
the standard quantum limit for monitoring the positions of a free mass can be breached.
Further implications on quantum nondemolition measurements are discussed.

PACS numbers: 08.65.Bz, 04.80.+z

There has been considerabl. e recent interest in
ascertaining and achieving the fundamental, quan-
tum limits on signal processing and precision
measurements, in particular for appl. ications
to optical. communications' ' and gravitational. -
wave detection. ' A major result of this work
is that one can beat the so-called standard quan-
tum limit for amplitude measurements on har-
monic oscillators. However, for the gravitation-
al-wave interferometer' it is usually supposed"
that the resolution is l.imited by the "standard
quantum limit" (SQL) for measuring the positions
of a free mass. ' In this paper it is shown that
the latter SQL is al, so not general. ly valid; it can
be breached by a specific quantum measurement
without special. preparation of the free-mass quan-
tum state. Toward this end I will describe a cl.ass
of generalized minimum-uncertainty wave packets
for masses, to be call.ed twisted coherent states,
which are also of interest in their own right. The
breakdown of the SQL for free-mass position
measurements demonstrates the fact that back ac-
tions from a conjugate observabl, e do not neces-
sarily, at least in accordance with the principle
of quantum mechanics, l.imit the accuracy of sub-
sequent measurements on an observable.

The evolution of a free mass is given by X(t)

= X(0)+P(0) t/m, so that the position fluctuation
at time t is

(~ (t))$QQ Kt/m (2)

On the other hand, it is clear that (ddsc(lo)) = 0 if
the initial state is an eigenstate of the self-ad-
joint operator X(0)+P(0)f,/m. Thus, the last
term in (1) can surely be negative and the SQL
is not generally valid. However, (~'(f)) =0 im-
plies (bP (t)) = so that (P'(0)/2m) = (P'(t)/2m)
=~, i.e. , an infinite average energy is needed to
produce such a state. ' A more realistic descrip-
tion can be developed as fol.lows.

For an oscillator of mass m and frequency ~,
the twisted or two-photon coherent states (TCS)"

+ (~(0)b,P (0)+b.P (0)~(0))t/m. (1)

In the previous derivation' ' of the general SQL
for monitoring free-mass positions, it is implic-
itly assumed that the t = 0 state of the mass (or
the state after measurement) is such that the
last term in (1) either vanishes or is positive.
Under this assumption the uncertainty principl. e
can be applied to minimize (1) at any time t with
the resuj. ting SQL
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l
pvn) are the eigenstates of tra+ va

(tra+ va~)ltrvn& = (urn+ vn *)ltrvn&,

lt l' - lvl' = 1,
(3)

where n is the annihilation operator of the oscil. —

lator mode. Here we adopt them to yield a class
of states for a mass ui with position X and mo-
mentum P. Define the following operator a on
the Hilbert space of states for the mass:

!

a = X(—mv/25)'t~+iP/(2ttmr»)'t', [a,a ]= I, (4)

where (d is now an a&.bib'. q parameter with unit
sec '. The trvisterl cotrei eiit states (TCS) !trvnr &

of a mass are defined to be the eigenstates of
tra+va~,

l p, l' —
l
vl'= 1, in analogy with (3) but

with a given by (4). The free-mass Hamiltonian
can be expressed

H = P /2»i =-,'Ru!(a a —=. a —=a '+-. )

The wave function(xltrvn&'), Xlx&=xlx&, can be
found through Eq. (3.24) of Ref. 1. Within the
choice of a constant phase it is given by

&xltr vnrd& =
mk!P. —Vl'

l

where

1/4 m&» 1+i) 2ti 't' ' . 2»ru ' 2 2tr 't'
l

(6)

]=-Im(p+v); n=n, + jn„n, „n, real.

The wave functions (6) constitute a generalization of the usual minimum-uncertainty wave packets
treated in every quantum mechanics textbook, which are given by (6) with $ =0. In the context of oscil-
lators, "squeezing" is obtained when v w 0 inltrvn), and $ is related to the direction of minimum squeez-
ing. As will be seen in the following, when $ & 0 the x-dependent phase in (6) leads to a narrowing of
(AX'(t)& from (bX'(0)& during free evolution, in direct contrast with the well-known spreading of
(bX'(t)& for minimum-uncertainty wave packets. " Because of this behavior, mass states (6) with $
) 0 will be called cont& acti ~ e states.

The first two moments of (6) are

(X)=-(trvncu!X!pvn&u& = (2tr/m~)' 'n„&P) = (2'»r rd)' 'n„
(&X &—:((X —(X)) &=2Pit;/rrrrr!, (AP2& =2hrrrrdil,

( = Itr —vl /4, rl =IN+ vl /4; lq =(1+4( )/16,

(aXZP& =itr/2 —(lr, (6PhX& = —itr/2 —Pi „

(P'/2m& =trr»(n, '+rl).

(8)

(9)

(10)

(11)

(12)

The average mass energy (12) is finite when i»,
n„and l vl are finite. From (9)-(10) it follows
that the minimum-uncertainty product (bX'&(b P'&

=tr '/4 is achieved if and only if $ = 0.
The position fluctuation for a free mass start-

ing in an arbitrary TCS (6) is immediatel. y ob-
tained from (1) and (9)—(11),

~(hx-'it & I~

»r(dA'2( t)&/2ti = t;/rd —$ f + rlr» t2. (13)

If f (0, (AX'(t)& increases monotonically. In
contrast to this usual situation, Eq. (13) is plotted
in Fig. 1 for contra. ctive states at t = 0 (i.e, , for
$ & 0). The minimum fluctuation 1/16r»rl can be
made arbitrarily small even for fixed ~ by letting
il (and thus also (H)) become arbitrarily large.
The time t at this f I.uctuation level is t,„=h/2il o!
so that ~n(a X (t )&/2Irt = I/8~. If (b, X'(t)& is
minimized with respect to ~ at any given t simi-

1/16 r» t/

2t

FIG. 1. The position QUctuation of a contractive
state from (13); t =—j/2g~, t —0 when & -0.
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lar to the derivation of (2), one obtains

m(b, Y'(t))/2St =(-+ (')' ' —$ (14)

which, for large $, is approximately 1/8$, the
same value as that obtained from minimization
with respect to t. The value (AX'(t))/t given by
(14) can be made arbitrarily small. with a large
$, in contrast with the SQL (2) or the case of or-
dinary minimum-uncertainty wave packets. Both
g

—~ snd q-~ for obtaining small (hX'(t))/t
and (6X'(t)) can be achieved simultaneously by
letting i vi -~ with Re(p, 'v)( 0.

The time interval 7. for which n~(AX'(t))/25 lies
below a given level 5' satisfies, from (10) and

(»),

(15)

This constraint is relevant if one is interested
in keeping the mass-position fluctuation as small
as possible for as long as possible. Unlike the
previous case (14), (15) is only a factor of 2

better than the SQL (2).
For application to sequences of position meas-

urements, the t =0 free-mass state is that ob-
tained immediately after a quantum measure-
ment on the position of the mass. The measure-
ment formalism of Gordon and Louisell" is used
in the following discussion of quantum measure-
ments. Thus, a quantum measurement is de-
scribed by a set of operators i

p') (P"
i such that

(p"
i pi p") gives the measurement probability in

state p while i y ) is the state after measure-
ment. The ordinary position measurement is
then described by ix) (x i, which is perfectly
sharp and cannot be realized without an infinite
average energy. ' The measurement described
by i V.vu~) (pvu~ i would have a position resolu-
tion hf/m~ and simultaneously a momentum res-
olution Sm~g, while leaving the mass after
measurement in I pvu ~). This measurement
may be described as the measurement of a non-
self -adjoint operator. " ' Nevertheless, it
does»0t go beyond the framework of convention-
al quantum mechanics. Indeed, an explicit inter-
action Hamiltonian realization of this measure-
ment in the standard fashion has been given be-
fore" for ) =0, which can be generalized straight-
forwardly to arbitrary TCS's. Of course in this
realization the initial apparatus and mass states
are uncorre lated.

With this measurement one can monitor the
positions of a free mass in time without suffer-
ing any back action from the mass momentum.

One merely adjusts h&/m~ to the required posi-
tion resolution and makes the next measurement
before a time lapse j/q~ (beyond which the posi-
tion uncertainty of the next measurement would
increase above the set level). This may be re-
peated indefinitely in a sequence of measure-
ments all described by the same i pvuu)(@vugg i,
during which the position uncertainty never in-
creases beyond the set level. There is no need
to intervene between measurements for state
preparation. However, there is a limitation fi/m

on the ratio of the resolution hg/mcu and the time
lapse $/q&a from (15). Even this limitation is
overcome in a measurement described by (pvu~i
x ( p'v' u&u'i, in which different values of tj.', v'.
and co' are used to set the required position reso-
lution and p., u, ~ are used to adjust the time
lapse. While such a measurement is possible in
principle, "no explicit Hamiltonian realization
is known.

The breakdown of the general SQL does not im-
ply that the particular gravitational-wave inter-
ferometer is not subject to a serious resolution
limit of the order given by (2). In fact Caves"
has produced a separate argument for the validity
of (2) from a specific analysis of the interferom-
eter. On the other hand, a recent analysis" indi-
cates that there is no limit to the resolution of
such interferometers. It appears that a careful
and complete quantum mechanical treatment of
the interferometer is in order.

The above analysis shows that back actions
from a conjugate observable need not induce any
inaccuracy in the subsequent measurement of
an observable. Even though the position measure-
ment of a free mass is not a quantum nondemoli-
tion (QND) measurement and the position opera-
tor not a QND observable according to the recent
refined definitions, "it is clear from the above
development that they may still have the QND
character in the original sense of Braginskii and
Vorontsov' —namely, the disturbance due to the
first measurement plus subsequent free motion
do not demolish the possibility of an accurate
second measurement. In this primal and useful
sense no one has ever shown, for either a free
mass or an oscillator, that there is any observa-
ble which cannot be monitored in a QND way. In-
deed, the above analysis can be construed as a
way to perform QND position measurements on
a free mass.
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