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Invasion Percolation on the Cayley Tree: Exact Solution of a Modified Percolation Model
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A modified form of percolation theory is solved exactly on a Cayley tree of arbitrary
coordination number. In this model, cluster growth proceeds "dynamically" by invasion
along a path of least resistance. Although there are clear parallels to ordinary 'Static"
percolation at the percolation threshold, there are also significant differences. In parti-
cular, the scaling function which describes the shape of large clusters is different in the
two models.

PACS numbers: 05.60.+w, 02.50.+s, 64.60.Fr

In this Letter we consider a modified form of
percolation theory known as invasion percolation.
This model was motivated by the study of the dis-
placement of one Quid by another in a porous
medium, ' but in principle it may be applied to any
kind of "dynamical" percolation which proceeds
by invasion along a path of least resistance. A
detailed description of the model has recently
been given by Wilkinson and Willemsen' (here-
after WW). The major focus of these papers was
the process of invasion in a finite domain, with
a trapping rule which prevents the displacing fluid
from invading a region which it has surrounded,
this representing physically the incompressibility
of the displaced phase. Here we will consider the
somewhat simpler problem of growing a cluster
from a point into an infinite medium in the ab-
sence of this trapping rule. For a lattice repre-
sentation of the medium, this process may be
defined as follows: (1) Consider an infinite lattice
of sites and connecting bonds in which every site
is assigned a random number r, drawn from a
uniform distribution on the unit interval 0 ~~ & 1.
(2) Choose a site (the "origin") to be occupied as
the start of the cluster. Define the boundary to
be those unoccupied sites which are nearest
neighbors of sites in the cluster. (3) At each
time step increase the number of sites in the
cluster by one, by occupying that boundary site
which has the smallest random number.

These rules may be contrasted with the opera-
tional. definition of ordinary percolation in which
the decision whether a given site is occupied or
not is also made by examining a random number.
From this viewpoint the al.gorithm for growing
ordinary percolation ct.usters at occupation prob-
ability p is to take rules 1 and 2 above but replace
rule 3 by the fol.lowing: (3') At each time step the
current boundary sites are examined and those
with random number r less than p are accepted
into the cluster. The cluster terminates when no

sites with r l.ess than p remain on the boundary.
As is well known' there is a critical. perco1.ation
probability p, such that for p &p, the cluster al-
ways terminates, but for p &p, there is a finite
probability that the cluster grows indefinitely.

There is no control. variabl. e in invasion perco-
lation analogous to p, but that the two forms of
percolation are not so different may be seen by
considering the invasion-percolation acceptance
probability profile a„(r), defined' such that a„(x)
A' is the probabi1, ity that the random number cho-
sen at the nth step is in the interval [r,r+dr].
It was found by %W that as n -~, the profile ap-
proaches a step function of the form

(y) pc pc t
0 if ~&p, ,

where p, is the ordinary percolation threshold for
the lattice in question. This apparent1y remark-
able result' is not really so surprising, as one
knows from ordinary percolation that the invasion
cluster could not grow to n= if only random
numbers less than p, were picked. One can also
argue heuristically that as n -~ the law of large
numbers precludes the necessity of picking a fi-
nite fraction of random numbers larger than p, .

The central. result (1) suggests that large inva-
sion-perco1. ation clusters are "the same" as or-
dinary percolation clusters when p is exactly p, ,
since the distribution of random numbers accept-
ed into the cluster is the same in the two cases.
However, this is a somewhat vague statement,
and the main purpose of the present Letter is to
examine its meaning in an exactly soluble case.

What follows is an exact analysis of invasion
percolation on the Cayley tree, and a comparison
of these resu1. ts with those of ordinary percola-
tion. We define a tree of coordination number
1+v to consist of a sites (nodes) on level m in
which every node on level. mw 0 is considered a
nearest neighbor of one node on 1.evel m —1 and
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0 nodes on l.evel. m+1. The origin is the root
node at m = 0, and the first step, n = 1, consists
of adding to the cluster one of the 0 nodes at level.
m=1.. Since the analysis is of necessity some-
what technical. , we wil. l summarize the main re-
sults here:

(a) The result (1) is correct with p, = o '.
(b) The probability that a random number great-

er than 0' '+& is chosen on the nth step vanishes
as n -~ as 1/Kn for ~ = 0 and exponentially in n
for &&0.

(c) Define the shape function S " for a cluster
of size n to be the number of occupied sites on
l.evel m of the tree. Then as m, n -~ with m/un
fixed, 8 " has the scaling form

expected number

n!(no -m+ o - 1)1
S "=cr '(om —m + o)m (I —m)! (no+ o —1j!1) (3)

The mean l.evel number (m) = n 'g mS ", which
is the analog of the mean square cluster size R'
on a regul. ar lattice, can be expressed as the sin-
gle hypergeometric function polynomial (m) =F(1,
1 n-;1 —o no-;o) and asymptotically

n~~ &~2 4 +1
2(o —1) 3(o —1)

Finally, in the limit n-~, m/Kn fixed, the shape
function (3) reduces to the scaling form (2) with

20'-1 n
(2)

S(x)=xe "'.

which is of the same form as in ordinary perco-
lation.

(d) The scaling function S(x) is independent of
o but is different from that of ordinary percola-
tlOn»

Our method of solution relies heavily on the use
of generating functions, whose application to per-
colation on the Cayley tree is wel. l. known. ' How-

ever, to our knowl. edge, detailed questions of
cl.uster shapes have not been investigated before,
and so we begin with a derivation of the results
in ordinary percol. ation which we need for l,ater
comparison. If a cluster of n nodes is connected
to the root, it wil, l. necessarily be surrounded by
exactly (o —l)n+o vacant boundary nodes. This
implies that every such connected cluster occurs
with equal probability P"(1-p)" """and enables
us to determine average cluster properties at
fixed n without reference to the value of p. To
compute S " we introduce the generating function

f (P) =1+P+oP'+ ~ =1+P[f(P)]',

in which the coefficient of P" counts the number
of possible n-node clusters connected to the root
through one of the 0' branches. The generating
function for the total number of clusters connect-
ed to the root through all o' branches is [f (P)]',
and for the number of clusters containing a par-
ticular node on level m is P [f(P)]"" +'. The
probabil. ity that a particular node on level m is
one of n nodes connected to the root is the ratio
of the coefficients of P" in these two expressions,
and these are easily determined by contour in-
tegration using f as the independent variable 6

Multiplying this probability by 0 we obtain the

Thus any measure of the "linear" extent of these
large clusters must scale as R- ((m))'~'-n'~~,
with the classical" fractal dimension y= 4.

To obtain the corresponding shape function for
invasion percol. ation we def ine the generating
functions

g„(P;r)= Z P"g "(h),
tl =0

g(a, p; r)= Q o"o. g (p;r),
m=O

where g "(r)Ch is the probability that a particu-
lar node on l.evel m has an associated random
number in the interval, [h, r+Cr] and is selected
to be added to the growing cluster at step n. We
define g '(h) =6,. The integrated quantity 6 "
= I,'Ck g "(h) is the probability that a given node
on level m is added at step n, and the shape func-
tion S "=o' g„, G ". Consider first the case
m=1. For an m=1 node on one branch to be
selected at the nth step, the root must be con-
nected to an n —1 cluster through the remaining
o —1 branches. Furthermore, that cluster must
be an ordinary percolation cluster in that every
cluster node has random number less than r, and
every boundary node has random number greater
than r, so that the probability density g, "(r) will
contain the factor r" '(1-r)' "". Knowing that
the number of these ordinary percolation clusters
is described by the generating function [f(p)]' '
we conclude that g, (p; r) = p(1 —r) ' '[f (pr(1- r) ' j]' '. For o = 2 this gives g, (P; r) = (1- [1
—4pr(1 —r)]'~']/2r. The generating function for
m & 1 can be obtained by induction. Assume that
we have determined g, (p; s) for a node with ran-
dom number s on level es —1, and wish to deter-
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mine the probability that one of its neighbors on
m has random number in the interval [r, r+dr]
and is to be selected. The other o -1 nearest
neighbors on level m must be part of an ordinary
percolation cluster, so that g (p; r) will contain
a factor g,{P;r). To complete the calculation we

(6b)

The integral. Eq. (6b) can be solved explicitly to yield

must distinguish between the cases s & r and s cr.
In the former, no additional growth in the branch-
es described by g,(p;s) is possible, while in the
latter such additions are simply handled by mak-
ing the replacement g, (P;s) —g, (P;r). In
this way we obtain the recursion relation and
corresponding integral equation:

g (P;r) = g, (P;r)[ f,
"dsg, (P;r)+ f„'dsg, (P;s)], (6a)

g (a,P;r) =1+oag,(P;r)[rg(a, P;r)+ f„dsg( aP;s)].

oag, (p;r) I oag, (p;s)
1 —o'arg, (P;r) J„1-oasg, (P;s) (7)

This is the fundamental result of this Letter. Although the integral. in (7) can be expressed in terms of
elementary functions for the special case 0 = 2, it suffices for certain scaling properties to evaluate it
for a and P near unity only.

The distribution of random numbers selected at step n is a„(r)= Q o g ", which is the coefficient
of P" in g(1,P;r). For o =2 we find

g(1,P;r) = (1+P(1 —2r)/ [1- 4Pr(l -r)]'t') /(1 —P),

while for general o the dominant singularities in the limit p-1 are similar, and lead to the large-n
scaling behavior of the acceptance profile as

a„(r)- 2o erfc{(or- l)[no/2(o —1)]'~'). (8)

As postulated by WW, this profile depends only on the seal. ing variable (r P,)n-'t~ with the classical
gap exponent b =2. Equation (8) is the basis for the statements (a) and (b) in the introduction.

It follows from (6b) that the integrated quantity

G(a, P) = f dr g(a, P;r) =Q o' a P"G "

is given by [g(a,P;0) —1]/oag, (P;0), i.e. , no additional integration beyond that in (7) is required. For
(T = 2 we find

(' (a, l3) = exp I) (n(1-())+ (n
a P(l —a) 1 —aP+ Q

(9)

where Q=[P(1 —2a+ a'P)]'~'. For arbitrary o, the integrand in (7) can be expanded in a Taylor series
with the necessary coefficients easily determined by the same methods that led to (3). The integration
over s is then trivial and we find

G(a, p)=expI(a —))P eea
" ',

,
' a ()"I.(n- m)! (no)!

From (10) we obtain the mean level number

-&»
y 0+y(m) = —Q Q —„F(1,1 n1-Pn-" o;o) = — —— inn+ O(l),n pe malta) n — 3 2((T 1) 3 o 1

(10)

which to leading order as n -~ is larger by a factor & than that for ordinary percolation as given by
(4). Finally, the behavior of G for large m and n is determined by the singularity structure of
G(a, P) as a —1 and P —1. With t2=o(1 —a)2/2(1 —P)(o —1) fixed, we find

G (a, P) - exp, ,~, ln [t+ ( t ' —1)' '] (12)

a result which agrees with (9) when o = 2. The scaling form (12) implies the scaling form (2) for & "
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with

S(x)=2xf, dy G(y)/y',

G(x)= . ~ dtexpI-x't* —,I~„, lnrt+(t —*1F'*]I,

(13a)

(13b)

where the contour encloses, counterclockwise,
the cut in the integrand, —~ & t ~ —1. Clearly no

rescaling can make the invasion percolation ex-
pression (13a) equal to the simple Gaussian (5)
for ordinary percolation. For small. x, S(x) in

Eg. (13a) has the behavior x/2+ O(x'), which
translates into the statement that for 1«m«fn
only one half as many nodes are occupied by in-
vasion as compared to ordinary percolation. For
general. x, see Fig. 1. The differences between
the two models are by no means small, and we
indeed consider this result the paradox of inva
sion percolation in view of the sharp-profilere-.
sul, t (8).

Since the above analysis has been somewhat
involved, we have thought it worthwhile to check
the results by direct Monte Carlo simulation.
In particul. ar, based on 10000 realizations, we
find the cluster shape function S "for 1 & m &n
& 100 for cr = 2 and o = 3 to be in good agreement
with the analytic results obtained from (10). For
regular lattices, Monte Carlo simulation seems
the only way to obtain quantitative information
about invasion percolation, since an exact analy-
sis along the lines of this Letter is clearly impos-

sible, and even series-expansion methods appear
difficult to apply. One interesting aspect of such
simulations is that, because of the fundamental.
property (1), they can provide an extremely good
estimate of P, . Preliminary results for the
square- and simple-cubic lattices yield values
which are competitive with best known estimates
from series and Monte Carlo work on ordinary
percolation. Two additional. quantities which can
be obtained from these simulations are the root
mean square cluster radius R, and the "tai1," of
the acceptance profile, A. = f. dna(r) If .we as-
sume that as the cluster size n -~ these scale
as R- n' ~ and A - n ~, then the exponents y and
X can be estimated. We conjecture' that the frac-
tal dimension y is the same as that of ordinary
percolation, i.e., ~/v, where ~ and vare the
usual gap and correlation length exponents, and
that x is 1/b, . These conjectures are consistent
with our results on the Cayley tree, for which
6=2 and v=~, and also with preliminary Monte
Carlo simulations in two and three dimensions.
Further Monte Carlo work is in progress.

The authors would l.ike to thank A. B. Harris
for useful discussions.
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FIG. 1. Cluster-shape sealing curves. The dashed
line is ordinary percolation, Eq. (5), and the solid line
invasion precolation, Eq. {13a).
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