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Influence of Electron-Phonon Coupling on Transport near a Mobility Edge
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The authors treat electronic transport in disordered systems, including the electron-
phonon interaction, on both sides of a mobility edge e, on the same footing. By applica-
tion of a mode-coupling approximation self-consistent equations are derived from which
one gets the matrices describing density relaxation due to both coherent tunneling pro-
cesses and hopping processes. The resulting conductivity interpolates between a metal-
lic behavior well above and a hopping behavior well below q .
PACS numbers: 71.30.+h, 71.38.+i, 72.60.+g, 72.80.Ng

Transport in disordered systems showing a mo-
bility edge e, at T = 0 is usually described (i) in
terms of hopping, if transport is well below e„
or (ii) in terms of transport in extended states
above e, .' In particular, transport in amorphous
semiconductors at sufficiently high temperatures
is thought to be due to carriers thermally activat-
ed to energies just above ~„ahopping contribu-
tion is then neglected. On the other hand, if one
allows for finite temperature and finite electron-
phonon coupling, a mobility edge is not defined.
Consequently the distinction of hopping transport
versus extended-state transport becomes mean-
ingless. A more complete theory of transport,
covering both sides of e„is needed to study the
transition from metalliclike conduction well above

e, to hopping conduction well below e, .'
Previously the influence of the dynamical elec-

tron-phonon interaction on transport in strongly
disordered systems has been studied in order to
explain the negative temperature coefficient of
dirty metallic conductors. ' ' In this Letter we
shall essentially follow the approach of Belitz
and Schirmacher' which is based on the mode-
coupling theory of Gotze' and Belitz and Gotze. '
However, in contrast to these authors, we shall
treat a tight-binding model in site representation,
leading quite naturally to a hopping description
in the limit of small electron transfer t.' Our
model Hamiltonian reads

P=g, (e, —e)n, +tQ, ,exp(s, , )c, c, +lI~, (l)
where e,. are the (renormalized) site energies, t
the nearest-neighbor transfer, B~ the convention-
al phonon Hamiltonian, and

s, , =Q, [A, , (q)a, t -A, ,(- q)a, ] /(u,

contains the electron-phonon coupling functions

A, , (q) and the phonon energies &u, . We have em-
ployed the polaron transformation, "although we
do not study polaron effects here. The phonons

then couple to the electron transfer, leading to
a phonon contribution to the current. Such a con-
tribution is essential for a description of hopping
processes. ' The site energies are distributed
according to a given distribution function; the
variance of the site energy differences of near-
est neighbors is taken as a measure of disorder:
E' = ((~; —~, )'&.

The configurational averaged conductivity can
be written'

2

& ( )&= Z&, '{'q;;( )- u. ;, '),
gg fJ (3)

where p = (ksT) ', Q is the volume, e the elec-
tronic charge, and 8,, the distance between two
sites i,j. The Kubo-type density correlation
function"

rp, , (z) = (e; n, ), (4)

is expressed in terms of the density relaxation
matrix

using the Zwanzig-Mori formalism by (in matrix
notation)

qr(z) = t [z + i Zo(z)go] '8'0 '. (6)

The projector Qo projects outside the space fn,. )
spanned by the density. [Without inclusion of the
configurational average into the Kubo brackets and
with Z, calculated to lowest order in t, Eq. (3)
expresses the conductivity in terms of the formal
solution of the linearized rate equation. ' In this
limit Z, is called the frequency-dependent colli-
sion matrix, which in the Markov limit z=0 is
given by the conventional equilibrium hopping
rates. "]

In terms of the translationally invariant config-
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uration-averaged Zo the conductivity may be written as

(7)

We now split i,. into a coherent and a hopping part":

n, =n,. '.+n, "=(itrQ, c, tc, +H.c.)+[itrQ, (exp(s, , +8) —Ijc, tc, +H.c.],
where

tr= te ', e '= (exp(s„))p„,„,„„b=Q, !A,/(oq!'coth(P ru, /2).

We have neglected the dependence of the coupling functions on the particular site indices i and j (denot-
ing nearest-neighbor sites).

In contrast to Z„the Van Hove correlation function

S,, (T) = (n, exp. (- iL, ~)n,. ) (9)

decouples into a phonon part and an electron part in lowest order in t. As our first major approxima-
tion we apply this decoupling to all orders in t, leading to

(10)

with

E(7 ) =Q, !A,/m, !'cosech(P &u, /2)cos(&u, ~).

Thus with

Z„.;'(z)=(N, '
A, '),z-li i

we have

(12)

1
A( )

1 —e 5(~ -QJ )/2 g{~l ~)g c I I (~l)
(d(&u —z) 1 —e

We make the model assumption'

1
G(ar) =-

27T

Zo, ~
"(z = 0) = 8 Zo;, '(z = i (uo}.

Here, to lowest order in the electron-phonon
coupling,

G = Jd (u G(ro) = 0 =2+, !A, /(u, !'/P (u,

is an effective dimensionless temperature. It
will be assumed to satisfy 8 « l. Equation (15)
implies that the hopping contribution to the con-
ductivity is given by a frequency integral over
the phonon propagator and the real part of the
frequency-dependent coherent conductivity, which
in turn depends on the hopping processes.

Here we introduce our second major approxima-

z„,(g)=(n,. ' zq, '
q, s. ri, ') (ss)

1 1

using once more the Zwanzig-Mori procedure:

(17)Z, '(z) = i [z —n,g, + i Z, (z}g,] 'g, '.

! tion: We calculate Z, '(iso, ) for a system without

d~ei~~(s» (~) I} 0 (14} dynamical electron-phonon coupling, i.e. , we re-
7t (u'+ No place the transfer term in Eq. (1) by trQ, ,c,tc,

In doing this we neglect the influence of the dy-
for the Phonon ProPagator, and consider high tern namical electron-phonon coupling on the frequen-
Peratures, P ~0 ( 2. Then the integmtlon in Eq. cy spect~m of the density relaxation matrm.
(13) can be done analytically, yielding Since only the frequency integral enters the the-

(15) ory, this approximation may be justified. It un-
derestimates the contribution Zo" in the regime
where dynamical electron-phonon processes be-
come important, since these increase the den-
sity relaxation, especially at low frequencies.

Z, '(z) is expressed in terms of a current relax-
ation matrix
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Here and below, following Qotze, ' we replace all
static correlation functions (Q„g„.. . ) by their
counterparts valid for an ordered system. If we
neglect band-structure effects this is represented
by free electrons having a temperature-dependent
effective mass m~*= m~e '. In particular, to
lowest order in t,

here we are mainly interested in transport below
e„where the hopping processes are dominant.
We find by a successive application of the Zwan-
zig-Mori procedure, replacing all higher-order
relaxation kernels by m(z},'

(Z,g, ),, = m(z) 5,, + [Z, "' (z+ im(z) )g,],, (19)

g„,' = (n; '!n, ') = 2tr v/P, (18) Thus

where v=n, /n, is the number of electrons per
site. Q, now projects outside (n, ] and (n,. '). We
treat the scattering (i.e., the current relaxation)
by phonons in the adiabatic approximation, since

2
m(Z) = t4 p (4, 4C, + 4, "4,. 4,. 4C, + 4, 4 4,) /2,

Z, '(z) = Z, ")(z+ im(z) ), (20)

(21)

where Z"' are the relaxation matrices of the or-
dered system. Using a mode-coupling approxima-
tion, ' we write

The bond energy trc,. c, + H. e. is perpendicular to the space (n, 'i f.or a homogeneous equilibrium sys-
tem, but it has a component in the space of the particle density (n, ). To simplify the calculation we do
not calculate this component, but rather replace the correlation function in Eq. (21) by (y, , + p, , )/2.
The mode-coupling approximation constitutes our third major approximation. Using Eqs. (6), (15),
and (20) we finally obtain two self-consistency equations, one for m„=m(z = 0):

Qp

m, =aP, k'dkf{k}[g,(k)(Z, '0)(k, im, )+ ez, "(k,im, +i~,)]g,(k)] '

and one for m, =m(z =i &u,):
Op

m, = n P k' dk f(k}[g,(k)Z, '"(k,i m, + i )d, )g,(k)] ',

f (k) = 4m'a3(1 + sin(ka)/ka) /(2w)'.

(22)

(23)

The Fourier transform of Zp"' is then expressed
by the density correlation function p'0)(k,. z) of
the ordered system with the help of Eq. (6}. The
prefactor P cancels, so that we can take the lim-
it T=0 for the electron system, where y'" and

gp are given by the Lindhard function, if we ne-
glect band-structure effects. The integration ex-
tends over the Brillouin zone with q, = 7)/a. In
terms of m, and m, the dc conductivity reads

(4(4=0))=4'+4" = ' „—+4 ). (24)
ne' 1 1

mz mi m~+ (dp

For 0 =0 this result agrees essentially with that
of Gotze" (see also Gotze, Prelovsek, and
Wo'lfle' ).

Figure 1 presents numerical results from Eqs.
(22) and (23) for the parameters indicated. In the
metallic regime well above c, the denominator
of the integrand of Eq. (22) is governed by the
first term describing density relaxation by co-
herent tunneling processes. m, is then small and
the coherent contribution to the conductivity dom-
inates. Its temperature coefficient is small and
upon approaching c, it changes sign. On the oth-
er hand, well below e, the density relaxation due

! to coherent tunneling processes becomes ineffec-
tive, m, tends to diverge, and the hopping contri-
bution proportional to 0 dominates the conductiv-
ity. In addition the integrand of Eq. (22) is now

governed by the hopping processes and m, will be
rougMy proportional to 6I, too.

The peculiar temperature dependence of the dc
conductivity and the thermopower found in doped
and undoped amorphous semiconductors is usual-
ly interpreted in terms of bandlike transport
above a mobility edge, sometimes including a
second path due to hopping in localized band tail
states (for a recent review see, e.g. , Beyer and
and Overhof"). The present theory, however,
shows that the character of transport is neither
pure coherent (bandlike) nor pure hopping, if the
electron-phonon interaction is considered to be
strong enough to influence the transport proces-
ses. The conductivity o(c) as a function of energy
turns out to be a smooth function increasing grad-
ually from low hoppinglike values to high bandlike
values. To get the conductivity for the semicon-
ducting system one has to integrate o(e) together
with a Boltzmann distribution. Transport will
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JI
ln 0™
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hand, if experimental results unambiguously sug-
gest an edgelike behavior of transport, one has
to conclude that there are very steep tails and
a mobility edge rather close to the band edge, or
that the electron-phonon coupling is so weak that
it may be neglected altogether.

This work has been supported in part by the
Deutsche Forschungsgemeinschaft.
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then be more or less close to e„depending on
details of the density of states and on the magni-
tude of the electron-phonon coupling. The ener-
getic position of the dominant transport channel
becomes a function of temperature. This effect
should be considered as an additional source for
the observed structure in the temperature de-
pendence of the transport data. On the other

FIG. 1. The conductivity o = ene2/m"Eo as a function
of the Fermi energy e. The mohi1ity edge for 0 = 0 is
situated at p = 0,25Ep The parameters are +p = 0,01&p,
g = 0.25&p. Dashed lines represent 0"(g).
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