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Method of Solution for a Class of Multidimensional Nonlinear Evolution Equations
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A general method is given for solving certain inverse problems in the plane. The re-
sults can be used to construct the solution to the initial-value problems of related non-
linear evolution equations in two spatial and one temporal dimension. The method also
allo@vs one to compute lumps, i.e. , multidimensional solitons tending to zero in all spa-
tial directions.

PACS numbers: 03.80.+r

The use of inverse scattering in one dimension
for solving the initial-value probl. em of certain
nonlinear equations in 1+ 1 dimensions, i.e. , one
spatial and one temporal. dimension, has been
well established. ' A central. idea is to relate a
nonlinear equation to a pair of linear operators,
the so-cal. led Lax pair. ' One of these operators
is "time independent" and is considered as a
scattering {or eigenvalue) probl. em. Wel. l.-known
scattering problems are the Schrodinger scatter-
ing probl. em, ' the so-cal. led Ablowitz-Kaup-
Newell-Segur (AKNS) system (a system of two
equations), and their natural generalizations:
the n & n AKNS' and the Gel'fand-Dikii' operator.
The inverse problem of the last two has onl. y re-
cently been solved. ' Several. physically impor-
tant equations, e.g. , the Korteweg-de Vries,
sine-Gordon, nonlinear Schrodinger, Boussinesq,
n-wave interaction, etc. , can be linearized via
the above scattering problems.

It is a1.so we1.l known' that certain two-dimen-
sional generalizations of the above scattering
equations are related to physical. ly interesting
nonlinear equations in 2+1 dimensions [these
equations are, in a sense, the (2+1)-dimension
anal. ogs of the nonlinear equations mentioned
above]. In particular the Schrodinger scattering
problem has been generalized and it is then re-
lated to the Kadomtsev-Petviashvil. i (KP) equa-
tion; there are two important cases, the so-
called KPI and KPII, which differ by a crucial
sign. Similarly, the generalized n && n AKNS
system' can be either hyperbolic or elliptic. In
both cases it is related to several physically
signif icant multidimensional nonlinear equations.

In spite of this connection between nonlinear
equations in 2+1 dimensions and linear systems
in the plane, the question of finding a viable
method, such as that in 1+1 dimensions, i.e. ,
the inverse scattering transform (IST), for solv-
ing the initial-value problem of these and other
mul. tidimensional equations has essential. ly re-

mained open. It should be noted that interesting
results in this direction were given in Refs. 8
and 9.

In this Letter we outline a rather general meth-
od for solving certain important inverse problems
in the pl.ane as wel. l as the initial-vat. ue problem
of the corresponding nonlinear equation. This
method has emerged from our investigation of
the scattering problems associated with several.
concrete problems: Benjamin-Ono, " KP I,"
KP II,"hyperbol. ic, and ell. iptic systems. "'
We point out that the treatment of KPII was of
crucial importance for the development of this
method, since it was the first time that the in-
adequacy of the Biemann-Hilbert formulation of
the IST in 2+1 dimensions was discovered. In
this Letter we give the linear integral equations
associated with the solution of the inverse prob-
lem of the fo1.lowing scattering equations: the
general. ized Schrodinger equations related to KP I
and KP II; the hyperbolic and elliptic versions
of the general. ized n && n AKNS system, which are
related to the Davey-Stewartson (DS) equation"
[a (2+ 1)-dimension generalization of the nonbn-
ear Schrodinger equation in 1+1 dimensions],
the n-wave interaction in 2+ 1 dimensions, the
modified KP equation, etc. Details can be found
in Refs. 11-14.

The main steps of the IST for problems in 2+ 1
dimensions can be summarized as follows: (i)
Define an eigenfunction p, (x,y, k) which is bounded
for al. l. complex values of the "spectral parameter"
k and which is appropriately normalized (p, -I
as k -~). This eigenfunction is usually defined in
terms of a Fredholm l.inear integral equation; it
may have homogeneous solutions. (ii) Compute
Bp/Bk. This is, in general, expressed in terms
of some other bounded eigenfunction, which we
call N(x, y, l,k), and appropriate scattering data.
We note that in some problems (e.g. , Benjamin-
Ono, KP I) p. ( , x, y)kis a sectionally mexomoxpkic
function of k, i.e. , it is holomorphic modulo poles,
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between p, and these homogeneous modes. Ne
have so far encountered two types of symmetry
conditions: "discrete" (KPII, elliptic systems)
and "differentiaV' (Benjamin-Ono, KP I). The
relationship between &p. /80, p, and the scatter-
ing data is the central equation associated with
the inverse problem of a given equation. It de-
fines, in general, a "~"problem, i.e. , given
8p/&k find p, . In the case that p, is sectionally
meromorphic this "~"problem degenerates to a
Hiemann-Hilbert problem. (iv) Use the fol.lowing
extension of Cauchy's formula"

1 "I' [Bp(x,y, z)/Bz]dzAdz 1 I tL(x, y, z)
p xqy) k

2mi~ ~ 2mi c z-k
(where p and C are an appropriate region and contour in the z plane, respectively) to solve the ' 8"
problem. Its solution is found, in general, in terms of a linear integral equation for p(x, y, k). Equa-
tion (1) is uniquely defined in terms of the above-mentioned scattering data. (v) Calculate the potential
q(x, y) directly from the solution of the inverse problem [typically given by integrals over p, (x,y, k) and
the scattering data]. The above discussion summarizes the steps needed for the solution of the inverse
problem. (vi) To effect the solution of the related nonl. inear evolution equation one needs to employ
the other linear operator in the I ax pair, i.e. , the time-dependent part. The action of this operator
fixes the time evolution of the scattering data in terms of initial scattering data. Since the initial scat-
tering data can always be expressed in terms of the initial data q(x, y, 0), Eq. (1), and hence the for-
mula for q(x, y, t ), is uniquely defined in terms of the initial data.

(a) We first consider the scattering equation

v p y
+ p, „„+2i kp„+q (x y) p)=0 ) (2)

where c =i, and p. (x,y, k) and q(x, y) are scalars. We assume that q(x, y)-0 sufficiently fast as x'+y'
The solution of the inverse problem associated with (2) is given by the following linear integral

equations:

q),
'

q, 1 "" ""f(v, l)e '"''"'p (l)dldv
p, (k) —iQ ', + =1,k-k, + k-k, 2@i ~ ~ p-k+io

""f(,l)e '""'"p, (l)did
l= 1 j l ~oo ~()o j

(3a)

(3b)

N f oo goo

w(x, y)= —2Z(v, . '(x, y)+0',. (x y)1am- f(lr l)e *. . .a)p-(x y l)died(I (4)Bx

Let the scattering data evolve in time as follows: sk,. '/st=0 y. '(t)=12(k. ')2t+ y '(0) f (k l t)
=f (k, l, 0)exp[4i(l ' —k') t]. Then q(x, y, t) as defined from Eq. (4) [where p, and q),.

' are computed via
(3)] solves the KPI equation, i.e. ,

(q, +6qq„+ q„„„)„=—3g q, , (5)
with v =i. Pure lump solutions correspond to f(k, l, 0) =0, in which ease (3) reduces to a, system of al
gebraic equations; hence the potential q is found in closed form.

(b) The solution of the inverse problem associated with (2) with v= —1 is given by
1 F(z„,z, )exp[ i(2z~x —4z, z-„y)] p, (x,y, -Z) dz n dZ

where R„ is the entire z-complex plane, z =z~ —izI, dzh dZ = —2i dzz dzI . Equation (5) defines p, in

(6)

where p, (k)=—p, (x,y, k)& (I()& =
0& (x&y), 0(x, y, l, k)—= i(l-k)x —i(l'-k')y, and+' means summation

from c = 1 to N unl. ess any of the denominators vanish (i.e. , omit those terms) ~ Equations (3) define
p. (x,y, k), (q),."(x,y), q), (x,y)], ,~ in terms of f(k, l), (k, ', y, '], ,", which can be expressed in terms
of integrals over suitable scattering functions. Once p, and q),.

' have been found, q(x, y) is recon-
structed from
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terms of F(z» zI ) which as above is obtained in closed form, i.e. ,

F(ks, ki) = —sgn(k„)f d$ I „dq exp[i(2k~& —4k, k~q)]q($, &)P($,&, k)/(4&) ~

Then q(x, y) is found from

1
q(x, y)= — F(z„,zr)exp[-i(2zsx —4z, zsy)] p(x, y, -z)dzAdZ. (7)

7T Bx

Let F(z„,z„ t)=F(zs, z»0)exp[-4i(z'+Z ')t]. Then q(x, y, t) as defined from Eq. (7), solves KPII,
i.e. , Eq. (5) with c'= —1.

(c) Consider the hyperbolic version of the system

p, „=ikJp, + qtL+ v Jp, , Jf = Jf-fJ, (8)

i.e. , c'= 1. » Eq. (8) p(x, y, k) is an nth-order matrix, J is a constant real. diagonal matrix with ele-
ments J,& J2»' ' J„, and q(x, y) is an nth-order off-diagonal matrix containing the potentials
q;;(x,y). We assume that q, ,(x,y)-0 sufficiently fast as x'+y'-~. The inverse problem associated
with Eq. (8) can be solved via

1 "" I" p, (x y I)e" "f(I v)e """'"""dldv
(xqyq k)+ =I,

27k 7 v -k+ j0

Let f(l, k, t)=exp(iltA) f (l,k, 0)exp(-iktA), where A =diag(C». ~ .,C„) and J, , C; are defined in terms
of n... P,.&

via n, , = (C,. —C )/(J, —Jz), P,.&
= C,. -J,. o,&. Then q(x, y, t ) as defined from (10) solves the

n-wave interaction equations in 2+ 1 dimensions,

where I is the n xn identity matrix and as above f (l, v) is obtained in closed form. The potential is re-
constructed from

q(x, y)= —(1/2m) JJ „f tL-(x~y~ l)e'r "f(l,v)e '"~'+' -o)'dldv (10)

k=1, k &j

Let J' = diag(1, —1), q» = Q, q» = o Q, c' = + 1,f ( l, k, t ) = exp(- l'tA) f ( l, k, 0)exp(k' tA), A= diag(i, —i ).
Then Q satisfies the DSI equation,

iQ, +-'(Q„„+Q„)=-olQI'Q+q Q; q„„-q„=2o(IQI')„„, c= +1. (12)

(d) Consider the ell. iptic version of (8), i.e. , c'= —i. The solution of its inverse problem is given by
the following linear integral. equations:

V(x,y, k) —[T„,„~
&tL(x, y, )](k) -S(x,y, k)= I,

(-ix J +y+y, .')q&, '-T, '(x, y) —S, .'(x, y) = I', /,. =1,2, . . . , A, ,

for i = 1,. . .,n. In Eq. (13a) the matrix operator T„,„ is defined by

(13a)

(13b)

[T g( )](k)—
~ Q +[ B ( .i/ i) I] ( tyl RP I) (14)z-k

where 0 "(x,y, z„,z, ) = T,, (z~, z,)w" (x, y, k„,k,), T,, is part of the scattering data, and m" is an nth-
order matrix with zeros everywhere except at its ijth entry which equals exp[8, , (x, y, k)], 8,, (x, y, k)
-=i(J, J,.)(J,k. sx—+ key)/J, . The matrices S(x,y), T(x,y), S(x,y, k) have columns

S, '(x, y)=- lim [S'(x,y, k) —p, .'/(k -k, ')],

T, ,'(x, y) =-$[T.„.c t (x,y, )](k,,*)I;,
Ay

S'(x, y, k):—Q Q y, .'exp[ 8,, ( y,x-k, ~)]/[k —(k~, '+ik~, ' J, /J', .)].
j=l l~ =l

In the above expressions (g); denotes the ith column of the matrix g and 8,, =-8, , +is, , , where the con-
stants o,, are part of the scattering data.
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Equations (13) define the matrix p, (x,y, k) and the vectors(p, . (x,y)j, . , ', i =1,.. ., n, in terms of

(k&.', y&. ', (o';;)& *}&.=, ', i=1,. ~ ., n and T';&(k&,kl), i, j=l, .. ., n, i 4j . Given this scattering data
the potential q(x, y) is reconstructed from

n

q(xqy) = eT
2 Q P, x)gq ss+t si Ii (xqg qzs qsi)dz ds —f 4(x~y)
2'll ~ R s, y=l, a&g

where the ith column of the matrix 4 (x,y) is given by

n An

Z Z 4, .'(x, y)exp[- tl;;(x, X,ks&,.')] ~

)=1 l)=l
1.st 8=diag(l, —1), q»=Q, q»= —aQ, o =+1,

0"(x,y, ks, k, , t ) = exp([ks+ t(J& /J;)k, ]'tA}0"(x,y, ks, k, , 0)exp(-k'tA),

A -=diag[t, —i], &k, '/9 t =. 0, &y, . '/9 t = —2k, 'A ),
and

8(o,, ), . '/Bt =W,(2tk„.' [1—(Z/Z, .)]'- [1—(Z,. /Z, .)]'(k„.')').
Then Q satisfies DSII, i.e. , the equation obtained from (12) by replacing Q„„with -Q„„and y„with

Pure lump solutions correspond to 0'~(x, y, k„,k, , 0) = 0.
We remark that the "~"appxoach was first used by Heal. s and Coifman' for IST in 1+1 dimensions.

However, in 1+1 as opposed to 2+1 dimensions the Riemann-Hilbert approach is sufficient. Moreover,
in 2+ 1 dimensions the "&" approach requires a nontrivial symmetry relationship between Bp, /Bk and p.
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