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Kinetics of Domain Growth in Two Dimensions
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The growth of ordered domains following a quench of a system from a temperature T'

in the disordered phase to a state below the critical temperature 7' is simulated by
Monte Carlo computations. For a square-lattice gas with (fourfold-degenerate) 2 x 1 or-
der the domain size L,(t) grows with timet as I.(t) ~t", z —-0.35 (density conserved)
and & =2 (density not conserved), respectively. Quenches to T and to T =0 are also dis-
cussed.

PACS numbers: 64.60.Cn, 05.50.+q, 61.50.Cj, 68.55.+b

A system which is quenched from a disordered
state to a state below a transition temperature
where an ordered phase appears first forms
small domains separated by walls, since the or-
der parameter always has some degeneracy P
corresponding to the symmetry which is broken
at the transition. As the time t after the quench
increases, these domains coarsen and thus the
(unfavorable) excess free energy due to the walls
is reduced. In the late stages the domain sizes
are much larger than all microscopic lengths,
and by analogy with critica, l phenomena —where
the order-parameter correlation length $ is much
larger than all microscopic lengths and power
laws, scaling, and universality result' —one al-
so expects' the growth law for the domain size
L(t) to have a power-law form, L(t) ~t", where
x is some "universal" exponent, and the struc-
ture factor S(k, t) studied in scattering experi-
ments can be cast in scaled form, ' "

d being the dimensionality, where the wave vec-
tor k is measured relative to the Bragg positions
of the ordered structure, and S(z) is some scal-
ing function. But in contrast to critical phenom-
ena, ,

' our understanding of the "universality class-
es," i.e. , classes of systems for which x and S(z)
are the same, is quite incomplete: Only for a
nonconserved one-component order parameter
(p =2j, all theories agree that x =-,',""""
and this is also true if the density is conserved. ""
While for conserved order parameter and P =2
there is increasing evidence"" for the Lifshitz-
Slyozov" result x = 3, much less is known for
larger p. Larger p's do occur in ordered mono-
layers at surfaces, where p = 3 for the W3xW3
structure, p =4 for the 2x 1 structure, etc. ,

"a,nd
for ordered alloys on the fcc lattice (Cu-Au and
Cu, Au orderings, etc.),"for instance. While it

was suggested that L(t) ~lnt for p &2+1 (and thus
x = 0),"a recent simulation of the p-state Potts
model yielded" x=-—,' for P s 6 and x= 0.38 for
la,rge p.

In the present Letter we wish to contribute to
this interesting problem of sorting out the uni-
versality classes of domain growth by showing
that for order-disorder transitions with P =4 one
obtains x = 2 if the density is not conserved,
which result agrees with Ref. 20, while for con-
served density we obtain x =0.35. This result
contrasts with the case p = 2, where the conser-
vation law for the density did not make a differ-
ence. Our study is of potential interest to exper-
iments studying 0 on W(110) surfaces, for in-
stance, where a (2x 1) structure with p =4 oc-
curs" and the coverage of the monolayer is held
fixed.

We study a square lattice with repulsive inter-
actions of equal strength between nearest- and
next-nea. rest neighbors. Although this model is
not directly applicable to any real system, in con-
trast to some more complicated lattice-gas mod-
els (e.g. , in Kinzel, Selke, and Binder" ), the
choice of this model is reasonable as its static
properties" and its collective diffusion constant
D'4 have been studied in detail, a,nd it is simple
enough so that we are able to study N&N lattices
with N as large as N = 800 (with periodic boundary
conditions). Thus we are able to ascertain that
any finite-size effects, entering via the fact that
decay factors exp[ Dk't] can inv-olve a minimum
wave number k,.„=(2n)/N only, are completely
irrelevant, and also percolation of one kind of
domain [which we find to become important when
L(t)=N/3] plays no role. As an initial state for
the quench, we always choose a random configu-
ration (i.e. , infinite temperature). We monitor
the decay of the excess energy AE(t) =E(t) -E~,
where E~ is the internal energy of a monodomain
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sample in thermal equilibrium at the temperature
T chosen for the quench, and define an effective
mean domain size L(t) as

(2)

10

(a)

x = 0.5~.».

Here g, (t), g, (t) are the (instantaneous) order-pa-
rameter components of the (2X 1) structure, "gr
being the equilibrium value of the order param-
eter. Of course, the square of the numerator of
Eq. (2) is identical to the sum of the scattering
intensities S(0, t) at the superstructure Bragg po-
sitions. In order to average out fluctuations
which are quite pronounced in individual runs,
the quenching experiment typically was repeated
32 times for N =200 (and even more often for
smaller N, such as N = 80, 120). For compari-
son, quenches to T &T, were also performed,
and it was established that ~(t) decreased expo-
nentially fast as t -~ for the nonconserved case,
while ~ (t) o:t ' for conserved density. " The
density was chosen stoichiometric [p = 2 for the
(2&& 1) structure] in most cases, but also a few
cases with p & & were studied. "

Figure 1 shows typical results for the noncon-
served case at two temperatures. At the lower
temperature (data for T =0.75 look similar), af-
ter a short transient period of about t ~ 10 MCS
we find L(t) o.-t" with x = 2, and also ~ (t) ~t '
with y = —,

' (from scaling' one expects x =y). At
T = 2.0 and 2.1, on the other hand, both exponents
x, y are distinctly smaller (and no longer equal to
each other). At these temperatures, L(t) is not
large in comparison to f, and hence the expo-
nents x„y, then reflect the dynamic critical be-
havior: One expects" 2x, =y/vs, y, = (1 —a)/vz,
where e, y, and v are the static critical expo-
nents of specific heat, susceptibility, and corre-
lation length, and s is the dynamic exponent. "
Using the estimates for the (nonuniversal) expo-
nents" n = 0.3, y = 1.5 we would obtain z = 2.1
(from x, =0.42) ands =2.6 (from y, =0.32). The
discrepancy between these two numbers indicates
that our data are still affected by correction
terms to the leading asymptotic behavior seen at
T„and an accurate estimate of z cannot yet be
obtained. While the above exponent x =y =

& is
the same for both the present model and the four-
state Potts model, the critical behavior belongs
to different universality classes. Estimates of z
for the four-state Potts-model range from z = 2.5
toz=2. 7." It would be interesting to study the
critical behavior in two dimensions experimental-
ly by performing quenching experiments of ad-
sorbed layers at T,.
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FIG. 1. Log-log plot of E(t) and I.(t) vs time, for
the temperatures (measured in units of nearest-neigh-
bor exchange) (a) T=1.33 and {b) T =2.0, respectively
(T,= 2.1 at the chosen density p = 2). Numbers at the
curves are estimates of the exponent x. Time in the
nonconserved case is measured in units of Monte Carlo
steps (MCS) per site. Energies are measured in units
of the nearest-neighbor exchange constant.

The case of conserved density was simulated
by allowing the atoms to jump from a given site
to a neighboring empty lattice site. '~ " There is
clear evidence that for T distinctly less than T,
the exponents are x=y =0.35+ 0.05, and hence are
different from the nonconserved case (Fig. 2).
Unfortunately, the slight curvature visible on the
log-log plot does not allow us to give a more pre-
cise estimate of this exponent. At temperatures
closer to T, similar data are obtained; within our
precision we cannot distinguish x„y, from x,y in
the conserved case. But still another crossover
occurs at lower temperatures: Already at T
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FIQ. 2. Log-log plot of E'(t) and L (t) vs time, for
the temperature T = 1.33 and p = 2. Time in this case
with conservation law is measured in units of Monte
Carlo steps (MCS) per particle. Points are due to 32
samples of a 120X 120 system (sizes from 80x80 to
800X 800 give identical results within the statistical
error).
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=0.75 over several decades of time a rather slow
domain growth (described by effective exponents
x f f $ ff ~ 0.2) is observed [Fig. 3(a)], and at T
=0 the time evolution even seems to stop at a fi-

nite domain size, a metastable domain pattern
being frozen in.

In conclusion, we have studied the kinetics of
growth in a model exhibiting four-fold-degener-
ate {2x1) ordering. If there is no conservation
law, domain sizes simply grow as L(t) ~ t"' at
all temperatures T & T, [but near T, this is seen
only for L(t)» $, while for L(t) s $ the domain
growth can be related to the dynamic critical ex-
ponent z]. In the conserved case the exponent x
is distinctly less than &, and at low temperatures
there occurs another crossover due to frozen-in
domain patterns occurring in quenches to T = 0.
Neither of these results agrees with the sugges-
tion" L(t) ~ lnt; see also Ref. 16. Hence a theo-
retical understanding of our findings as yet is
completely lacking. We hope that the present
work will stimulate both further theoretical work
and experimental studies of domain growth in ad-
sorbed layers at surfaces.

One of us (A.S.) wishes to acknowledge support
through a fellowship from the Alexander von Hum
boldt Foundation.
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FIG. 3. Log-log plot of AF, (t) and L(t) vs time, for
temperatures (a) T = 0.75 and (b) T = 0.00. Size and
number of samples are indicated in the figure.
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