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It has been found that some charged, rotating black holes are unstable to the growth of
a small, perturbing, massless scalar field. Additionally, there are strong indications
that some uncharged black holes will be unstable to gravitational and electromagnetic
perturbations as well.
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The stability of black holes has been examined
by a number of researchers. Analytical work
shows that both charged and uncharged, nonrotat-
ing black holes are stable. ' ' Furthermore, a
combination of analytical and numerical work
has, until the present, failed to find an instabil-
ity. ' ' But, a proof of stability has not yet been
fou nd.

In this paper we show in fact that some black
holes are unstable. We imagine that there is
some, as yet undetermined, critical amount of
angular momentum, J, for a black hole of mass
M. For angular momenta greater than this an
instability will make some initially small pertur-
bation grow in time until the field radiates away
enough angular momentum for the black hole to
settle down in the stable region again. This pic-
ture is conjectural. What we do show here is
that there exist some choices of a, the Kerr angu-
lar momentum parameter, and q, the charge,
such that the amplitude of an initially small per-
turbing field will grow exponentially in time.
And there are good reasons for believing that the
instability will persist even for uncharged black
holes.

It is not surprising that this instability has
eluded discovery for so long. It appears only
for large multipoles and for rapidly rotating
black holes. These two conditions make the
numerical work quite difficult; and until now
there seemed to be no reason for believing that
the higher multipoles would be unstable first.
However with the advantage of hindsight, this
should not be too remarkable. After all, Fried-
man' has shown that general relativity makes all
rotating stars unstable —the slower the rotation,
the longer the growth time and the larger the
multipole. In fact he suggested privately some
years ago that one should be quite careful in
considering the stability of black holes for large
l and m.

The instability of a black hole may have im-
portant astrophysical consequences. This will
depend crucially upon the e-folding time for
black holes of reasonable masses and angular
momenta. But, for example, an instability may
be involved in the energy generation in quasars.
And it is quite likely to influence both the ampli-
tude and the wave form of the gravitational waves
resulting from any black hole interaction.
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Teukolsky first derived the separable wave equation which governs the evolution of a spin-s field in
the background geometry of a rotating black hole. One form of the radial part of this equation is

d, „dR K +2is{r —M)K
+ -4is~r —A. R=0.

dr dr

The quantity R(r) gives the radial dependence of the spin-s field; the time and angular dependence are
assumed to be exp(-iu t+imy). The quantity A. is an eigenvalue that comes from the 6-dependent part
of the wave equation and is a function of a&a; for a&v =0, A. =I(i+1) —s(s+1), where & is a spherical har-
monic index. Other quantities in equation (1) are & =r'—= 2Mr + a'+Q' and K=—(r'+ a')e -am. Either Q
or s should be set to zero in this equation —for a charged black hole this is the correct equation only
for a scalar field; a separable equation for the coupled gravitational and electromagnetic perturba-
tions of a charged, rotating black hole has not yet been found.

As r- ~ the general asymptotic solution to equation (1) is

R (r+/-r)z' "Z,exp(-iurr ~) +(r, /r) Z,„,exp(i&sr~),

where r „is defined by dr+/dr = (r'+ a')/6, .
The event horizon is at r, the greater of the two

roots of b =—0, r, =M ~ Qf'-a' —Q')'". There we
impose the boundary condition that radiation only
go into the black hole,

(2)

R -ezp(-ikr, ), (3)
and for a frequency close to the critical frequen-
cy of superradiance,

where k =v —am/(r+z+az) =&@ —~„;,.
A normal mode is a solution of Eq. (1) which

satisfies the boundary condition (3) and in addition
has Z~ =0. *'0 Thus the normal modes have radia-
tion only going out at infinity and only going down
the black hole.

The search for the normal modes constitutes
an eigenvalue problem for the complex resonant
frequency ~. If Im~ &0 then the time dependence
exp(-i&et ) implies that the wave dissipates as it
radiates away; this is a stawe normal mode.
However, if Im~&0 then the amplitude of the
wave grows in time and the mode is unstable.

For a black hole with nearly the maximum

T =- (r, '+a')k/2r, «1,
Eq. (1) is amenable to analytical methods. ' We
use the notation of Teukolsky and Press" through-
out this paper and, while later we rely heavily
upon their results, here we give only a sketchy
outline of their methods.

Whenx —= (r —r, )/r, «1 Eq. (1) has a solution
which satisfies boundary condition (3) in terms
of a hypergeometric function. And when x
»Max(o, T) the general solution is the sum of two
confluent hypergeometric functions. In the region
when Max(o, T) «x «1 the different solutions can
be matched together: explicit formulas for Z.
and Z,„, result. Specifically

2ao'"'(e" /2ivo)" "+"+" I'(2a) I'{1+s —4iT/o)
I'(—,

' —s +a —2i&u) I'(—,
' + s +a —2i&u) 1 (-,

' + n + 2i~ —4iT/o)

where &3 —= ~r+, a' =A. + (s+ —,')' —4&3', and (n --n) means take the first term with n replaced by -n.
For a resonant frequency Z~ vanishes, which is equivalent to

e'"' ' ' I'(2n) I'(—,
' —s —n —2zcu) I'(-,' + s —n —2i~) I'(-,' —a + 2i~ —4zr/o)

2ko I' (-2n) I'(—,
' —s + n —2iw) I'(—,

' + s + a —2z&u) I'(—,
' + n + 2iv —4i7'/1z)

For large values of + this equation usually has no solution because the numerator is much bigger than
the denominator. However I'(-2n) has a simple pole when 2n is an integer; near this special case
there are some solutions for 7 which correspond to resonant frequencies.

To simplify Eq. (7) we make some further assumptions about the relative sizes of different quantities.
The real parts of & and n are assumed to be much larger than their imaginary parts. Then with the
assumption that T/o» Max(a, ~) the two I" functions containing -4ir/o are evaluated with Stirling s
formula with a branch cut in the complex 7. plane along the negative imaginary axis. The reflection
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formula is used on the remaining I' functions containing a -n to obtain

(e "/8td7. )' 4e'I"(2a) sin'(2wo. )

=
I
I'(—,

' —s + o. —2i(G) I'(—,
' + s + n —2i +) I

' sin[& (—,
' —s —n —2i(D) ] sin[& (—,

' + s —a —2i (ar ] .
With the additional assumption that u, ~ » 1 Eq. (8) simplifies further to

T4l(tx +4(d ) Q —2$(d
4 sin (2wo.') =exp(-4rin), exp(4n +4~&3)

2(X A +22(d (9)

We now make the final and most critical assumption, the justification of which we will give later,
that for (u =su, ~, , n =j/2+& with j an integer and e a small real number. Thus for frequencies near
e„;,a Taylor-series expansion for o.' about the point r&g, at which &(T; g2) =j/2 gives a =j/2+n'bT,
where &T =v. —T, ~, and n' =[2r„'/(r, '+ a')] (dn/des), ,&,

A.n examination of the angular eigenvalue prob-
lem shows that e'&0 for m&0.

Two solutions of Eq. (9) for 7 which are consistent with all of the previous assumptions are

T =-e/a'+b. T,
where

1 -2eQ(j'+ 16&3') ' ' . . j —4i&u
b,7' = , , ~ exp(j + 2v(3)

4&& Q , j+4i~

(10)

where & may be assumed to be &„., for the evalua-
tion of the right-hand side. For j an even integer,
these two values of 7 correspond to two normal
modes on the real axis with one on either side of
that special frequency which has a =j/2 precisely.
If & & 0 these modes are outside the superradiant
region; if «0 then they are inside. Whether
these modes are really stable or unstable is de-
termined by higher-order corrections which have
been ignored by our myriad assumptions. But the
existence of these modes, at least close to the
real axis, is certain.

For j an odd integer and E&0 the situation is
the same as for j even. But for j odd and «0,
the two modes are just above and just below, in
the complex plane, the special frequency which
has a =j/2 precisely. The mode below is stable,
the one above unstable. In addition, both fre-
quencies have a real part less than cbrit, so that
the unstable mode is inside the superradiant
region as it must be.4'

To demonstrate the existence of unstable modes
it remains to show that n is sufficiently close to
a half-integer for some choice of parameters.
We consider the sequence of black holes with o

=(r, —r )/r+ fixed and extremely small. For a
=0 (a Reissner-Nordstrom black hole close to
the limit where Q=M), n =(I+ —,'}'with I~IMI ~

Analysis of the angular eigenvalue problem shows
that, as long as o."&0, n decreases with increas-
ing aw and that, for & =~„;,and E =m, &' goes
through zero before a =M. So along this sequence

passes through half-integral values ~ + 1 times.

o«~o«!~!=!el«~ '=o '«1. (12)

In addition, sufficient conditions for the matching
of the solutions of Eq. (1) to derive Eq. (6) are
that there exist a range of values of x such that
I ~~ I

«
I ~e I~' «~x « 1 and that there exist a dif-

ferent range of values of x such that I ~&I « ~x
« I ~& I

'«1." It is clear that for sufficiently
small o and sufficiently large a and & it is possi-
ble to find an & such that all of these conditions
are satisfied.

%e have made estimates of the higher-order
corrections to the value of &T, given in Eq. (11),
which are caused by the approximations summar-
ized above. The corrections are always smaller
than 4v by the order of one of the small quanti-
ties. Hence, the higher-order corrections will
not stabilize the unstable mode.

We have shown that a massless, scalar field in
the Kerr-Newman geometry has some unstable
modes for some choices of the parameters a and

Q near the limit whenM'-a'- Q'-0. And we
would be suprised if the instabilities did not per-
sist in the extreme Kerr limit, when Q =0 and
a-M. After all, Eq. (1) can be considered at
least formally when Q'&0 and a'&M'. Then,
along the sequence of black holes with a fixed,

! And when it does so, at a value large enough that
the approximations leading to Eq. (11) are valid,
then a mode is unstable.

A summary of the inequalities which are suffi-
cient for Eq. (11) to be valid is
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the point where Q' vanishes is not the least bit
special as far as Eq. (1) is concerned. Further-
more, when e passes through a half-integral
value along this sequence, the two modes with j
odd move along the real axis and converge to-
ward ru„;, until the inequalities (12) are not satis-
fied. When «0 the modes emerge from ~„;,
with one on either side of the real axis, and the
imaginary parts of the frequencies grow as ~

&~"

until & is too large for our assumptions to be
valid. So when the instability is lost from sight
it is moving rapidly away from the real axis, and
there is no apparent reason why the mode should
become stable again before Q =0. We also ex-
pect gravitational and electromagnetic perturba-
tions of the Kerr metric to be unstable, because
in the limit of large n and (d the dependence of
Eq. (6) on the spin is unimportant.

R remains to be seen whether the instability
which we have found can be of any astrophysical
significance. An estimate of b.T from Eq. (11)
shows that the time scale for growth of the in-
stability is approximately (n/a) M Wit. h the in-
equalities (12) in mind we might choose n as
small as 10 and & as large as 0.01. Even with
these choices the growth time is of order 10' M—many times the age of the universe for a solar-
mass black hole. But, as we pointed out above,
it is our analysis that fails for shorter growth
times, and it seems quite reasonable to believe

that there are instabilities with much smaller
growth times. We are proceeding with further
numerical work in a search for these instabili-
ties.
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