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Periodically Forced Linear Oscillator with Impacts: Chaos and Long-Period Motions
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A simple model is discussed for a periodically forced oscillator with a constraint which
leads to motions with impacts. For "perfectly plastic" impacts the dynamics is repre-
sented by a discontinuous map defined on the circle. The map is shown to undergo period-
doubling bifurcations followed by complex sequences of transitions, due to the discon-
tinuities, in which arbitrarily long superstable periodic motions occur.

PACS numbers: 03.20.+i, 02.40.+m

We consider a limiting case of a dynamical
problem arising in mechanical systems with am-
plitude constraints. A single-degree-of -freedom
linear oscillator, subject to inertial, sinusoidal
excitation, is constrained so that motions are
possible only for negative displacement [x(t) &0].
When x(t) = 0, and x(t) = dx(t)/dt & 0, an impact
rule' is applied:

u(t, ') =-pu(t, ).
Here u and u are the (relative) velocities of ap-
proach and departure, respectively, t, is the
time of impact, and p is the coefficient of res-
titution. The perfectly elastic case, p =1, gives

rise to a Hamiltonian system and its attendant
area-preserving two-dimensional map. In this
Letter, in contrast, we consider the perfectly
plastic case @=0, for which a one-dimensional
map is obtained. See Holmes' and Shaw and
Holmes'~ for details on mechanical applications
and the derivation of equations. This problem
represents a simple example in which a one-
dimensional map' can be derived rigorously in
a physically meaningful limit.

The nondimensional equation for motions x(t)
&0 is

x+x =cos(ut; x(t,) =0, x(to) =y„(u) 1, (2)

which is solved by

x(t; t„y,) =(1 —&u') 'f-cosset, cos(t —t ) + [&u sin~t, + (1 —&us)y, ]sin(t —t ) +cosset j .
The first root of the transcendental equation

( l~ G~ yQ) ~ tl tO)

(3)

cascades" do not occur here, since the left
period-2n point moves into 0 - q

& w/2&v. In the
domain S= [0, &/2~]U [3s/2&@, 2m/m], f is flat
and has the value f (y) =-f (w/2&v); thus the period
2n orbit becomes suPe~stable. ' (S corresponds
to physical motions in which the oscillating mass
adheres to the constraint because of inertial
forces until the force changes sign at y= 2m/&u:

Since p=0, rebounds cannot occur. ) Shortly after
this, the right period-2n point encounters a dis-
continuity in the map.

For 2n —1 & ~ & 2n+ 1 f has n —1 discontinui-

2[1-cos(2&n/~)]+(1 - uP) sin'(2&n/~) = 0; (6)

this relationship gives bifurcation values u„-2n
+2/n as &u, n-~. As ~ increa. ses and f '(y„) de-
creases through -1, a period-2n, two-impact
orbit bifurcates from y„, but period-doubling

determines the next impact time t„and repeated solutions of (3) and (4), with y; =0 (since p =0), give
an orbit (t, j;—,

"
of the dynamical system. It is more convenient to work with the phase y;= t, mod(2v/

co) and consider the family of circle maps f~:S'-S' depending on the excitation frequency u&. We will
assume e &1.' Examples are shown in Fig. I, belom.

The fixed points of f, corresponding to orbits of period n (t, —t, =2~n/&v) containing one impact, are
easily found from (3) and (4);

1 2mn . 2&n '
cu +1= —arctan cos —1 co sin — . n-

(d (d (d 2
(6)

where [x] denotes the integer part of x and the
restriction is necessary to ensure that "mathe-
matical" orbits do not penetrate the constraint
x =0.' The stability of the fixed points is deter-
mined by f '(y„)—= (sl /By) ~ ~, ' and we find
that period-doubling bifurcations occur for f '(y„)
= -1 or
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ties which arise from the fact that orbits in which
the oscillating mass just kisses the constraint, x
=0, separate motions with arbitrarily close ini-
tial phase having their first impacts after times
t, —t, ~ 2~n/&u and t, ' —t, ~ 2&(n —1)/&u, respec-
tively. For 2n —1 & co &2n+1 the n connected
components of f represent motions in which
there are approximately n, n -1, . . . , 2, 1 periods
between impacts (reading from left to right).
Thus, as co increases, the left-hand point of the
period-2n two-impact orbit remains in 8 while
the right-hand point crosses the discontinuities
until we have a superstable orbit containing a
point in S and one on the rightmost branch of f~,
with period 2n -(n —1) =n+1. This sequence is
then repeated. 4

For the remainder of this Letter we concen-
trate on the Aansitions in which orbits cross the
discontinuities of f . We argue that, while f

does not possess a strange attractor or sensitive
dependence on initial conditions in the usual
sense, ' its dynamics and bifurcations are none-
theless very complex in this transition region.
For simplicity we discuss only the first such
region 4.7 & ~&4.9, following the period-doubling
bifurcation at ~, =4.6572. A sequence of maps
f for this region is shown in Fig. 1. In this
range there are two unstable fixed points,
and y„marked I. and A, corresponding to per-
iod-2 and period-1 orbits, respectively.

We start with a period-4, two-impact orbit
[Fig. 1(a)]. Directly after crossing the discon-
tinuity, the orbit contains three points, 1 on the
period-2 branch and 2 and 3 on the period-1
branch. Thus it still has period 4 but now con-
tains three impacts [Fig. 1(b)]. As ~ increases,
2 moves righbvard and 3 leftward, and continuous
dependence on ~ implies that there are values
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FIG. l. One-dimensional (forcing phase) maps f:S —S' arising from the impact oscillator. (a) ~ =4.7: period-
4, two-impact stable orbit. (b) ~ =4.762: period-4, three-impact superstable orbit. (c) ~ =4.796: period-l5, eight-
impact superstable orbit occurring close to ~", at which f~ (S) =l.. (d) ~=4.9: period-3, two-impact superstable
orbit.
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cu" & ~'a (4.7, 4.9) for which f~-'(S) = L and f~.(S)
=B. Such orbits are analogous to those occurring
at the countable set of "Misiurewicz points" for
C' one-dimensional maps with a single critical
point c, in which some iterate f (c) lands on an
unstable periodic point. In that case the maps
are known to have strange attractors on a finite
union of intervals which support an absolutely
continuous invariant measure. " Here, in con-
tra.st, almost all points (including those in S) are
mapped to a single point (L or R) and thus the
measure has only point support. However, these
bifurcation values do play a role analogous to the
corresponding ones in continuous maps in that
they are accumulation points for parameter inter-
vals over which arbitrarily long periodic orbits
exist; cf. Ref. 9. Such orbits are easily con-
structed by reference to Fig. 1(c), for example.
One selects a parameter value such that f (S)
lies arbitrarily close to L (above ox below), in
which case successive iterates spiral away until
one lands in S. We note that the accumulation
rate of these intervals is not universal, but de-
pends primarily on the derivative f '(q, ) of the
map at I.. The process can be iterated to yield
periodic orbits spending arbitrarily long times
near I and then R in irregular sequences of "per-
iod-2" and "period-1" jumps. Whenever they
contain a point in 8 such orbits are superstable.
In fact following ~" and accumulating upon ~'
from below are countably many "homoclinic" pa-
rameter values for which f '"(S)= L, and accumu-
lating from above values for which f~'""(S)= I..
These terminate with f (S)= A, after which f (S)
moves down the period-1 branch until we have the
simple orbit of Fig. 1(d). As for continuous one-
dimensional maps, we can iterate this procedure
to produce a self -similar bifurcation diagram
containing nested or "box-within-box" struc-
tures. "

Note that, while at the homoclinic bifurcation
values L (or R) attracts a set of nonzero meas-
ure (for some values it attracts almost all points),
it is not an. attractor in the usual sense, since
orbits starting in any neighborhood U of L leave
U before eventually returning. Such "attractors"
are extremely sensitive to small perturbations
(in &v), but do not display sensitive dependence
on initial conditions, since the flat region of f
over S contracts whole intervals of initial data.

We can summarize the gross aspects of the
dynamics of f in the bifurcation diagram of Fig.
2, which shows the successions of period-doub-
ling bifurcations followed by transitions in which
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FIQ. 2. A bifurcation diagram summarizing the low-
period stable motions. Solid 1ine, stable; dashed line,
unstable; dotted line, transition region. Ordinate in-
dicates period between impacts in multiples of T = 27t/

(d; number above branch also indicates period.
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the period is reduced from 2n to n+1 as a result
of passage over the n -1 discontinuities. We ex-
pect the dynamics within transitions for n & 3 to
be at least as complex as that for n=2, consid-
ered above.

For slightly higher va. lues of ~ (&u = 5) it is
possible to prove4 that, along with the period-3
superstable orbit containing a point on each
branch of f, there is also an invariant Cantor
set C supported on two disjoint subintervals I,
(containing L) and I, (containing A). The dynam-
ics of f, restricted to C, is conjugate to a shift
on two symbols. " Thus, orbits visiting I, and I2
in any preassigned sequence can be found simul-
taneously for the same value of u, including un-
countably many nonperiodic motions and an orbit
dense in C. All these orbits are unstable and
hence correspond to transient chaos or "preturbu-
lence. " The set C can be regarded as the ghost
of the set of arbitrarily long, stable, periodic
motions created during the transition region. In
a similar manner, after the last attractor vanish-
es at p, =2 in the one-dimensional family x - p,

-x', a shift on two symbols remains.
We close by remarking that simple implicit-

function-theorem arguments permit many of
these results to be generalized to the case of
large but finite dissipation at impacts (0 & p «1).
In particular, the two-shift for ~ ~5.0 still exists~
and can be proved hyperbolic, "and any (super)-
stable orbit of period n occurring in the transi-
tion region will persist in a nearby ~ interval
for p (depending on n) sufficiently small; how-
ever, p(n) may approach 0 as n-~.
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