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Periodicity of Classical Ground States
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A model of classical particles in one space dimension with an elementary length and
general finite-range interaction with hard core is considered. It is shown that such a
model must have a periodic ground state.
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One of the major unsolved problems in the
study of matter is to understand why, at low tem-
perature and pressure, there is a strong ten-
dency for molecules to be highly ordered. "
That is, it is unknown, even heuristically, why
solids are crystalline. (The high-pressure
problem is also unsolved, but is not considered
here. ) The first sucesses on the problem have
appeared in the last few years' " and consist of
exact studies of specific models in one and two
space dimensions. The techniques developed
are rather restricted to the specific interactions
considered. In this Letter we present the first
such argument of a general nature. (General
arguments are used in Duneau and Katz'4'" but
are not really relevant to this problem as they
allow all critical points of the energy, not just
ground states. ) Our model is one-dimensional
and allows general finite-range (including many-
body) potentials with hard core but with an
elementary length in space. We show that all
such systems have crystalline ground states.

Specifically, we consider "lattice gas" models,
wherein particles pan occupy sites in Z. We
allow limited multiple occupation; if we describe
the state of a system by its sequence (z, ~ j wZ].
of occupation numbers, we assume O-z, -K& ~
for all j. We assume an interaction of the follow-
ing general type. For each ordered set of con-
secutive occupation numbers (z, , z, +„... , z „,„j,
k «0, we have a (many-body) translation invar-
iant energy, f(z, , . . . , z,„),between the k+1
sites, subject only to the finite-range condition
f(z, , . . . , z,„)=0 if k «R for some fixed R&~.
(This is equivalent to an. arbitrary multiparticle
interaction of range k. ) To model systems at
zero temperature (and arbitrary pressure, which
is built into f and a chemical potential) we use
"ground states" defined as follows. z =(Z, ] is a
ground state if for every integer pair (k, I),

- + «, k - l, the energy function

[where the sum is over all pairs (k', l') where
either k&l'-l or k - k' l or both], considered
as a function only of the variables z, , k -j -l
(while z, =Z, for j & k and j & l ), attains an abso-
lute minimum for z, =z, , 0 - j - l. This is a
form of stability commonly used for infinite-par-
ticle models. " "

With the definitions just given of system, class
of interactions, and ground state we can establish
the following result.

Theorem. —There exists a periodic ground
state, with period at most g&.

I'«&f. —By considering abutting sets of R con-
secutive sites we can replace the model with an
equivalent one described through new occupation
variables z, now bounded by R~, and an interac-
tion g(z, , .. . , z, ,~) which vanishes whenever k
~ 2. Thus we consider the new model with 8, =2
and K=Rz. (The new variables describe blocks
of old variables but because the new state space
is larger, no information about particle config-
uration has been lost. Similarly the energy as a
function of state is unchanged. ) Let z =(z, ) be
a ground state. (Its existence is guaranteed by
a standard compactness argument. ) Define an
infinite sequence of (K+1) vectors, w„=(u, '

~
1

K+1], by tq, =zI,(s+,)+, , k =0, 1, . . .
From the pigeonhole principle there exists I; in
T and integers l, rn, 1- l & m - %+1, such that
for some subsequence (k, ] of the integers we
have, for all i, (a) u, . ' = w, . = t, and (b) u „"is
independent of i for l ~n -m. That is, there is
an infinite number of identical strings or blocks
spaced along the line. We now give a method for
moving these repeating blocks of coordinates
about so as to produce other ground states. De-
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fine the state z(l) by

iz, , j -k,(E+1)+l,
!

l~ z, , j -k,(E+1)+m,
z, (1) =,'

I
z'~& - o)(s') '- k (E+1)+m& j k,(E+1)+m+(m-l),

!
s, z;„, , k,(E+1)+m+(m —l) &j & k, (E+1)+m.

This moves the repeating block in the k,th segment to the left of the coordinates that previously Lay be-
tween it and the repeating block in segment k,. The repeating blocks are now in contact. Next we de-
fine states z(n), n ~ 2, recursively by

~z, (n), j k,-(E+I)+m+n(m-l),

z,. (n+1) =
z, (n), j ~ k„„(E+1)+m,

z,&,"i~, „&& „&„„&„»,k,(E+1)+m+n(m-l) &j &k,(E+1)+m+(n+1)(m-l),y+(A„+X p j(re+i)+l m n(m l)&

z,',",'. , k,(E+1)+m+(n+1)(m —l) &j&k„„(E+1)+m.
Finally we define the periodic state S by S,
=z» &z,» „„,„&.», where n= [j/(m —l)] and
-~&j& ~. It is easy to check that all z(n) are
ground states by using the fact that if E„,(z) is
minimized with z,. =z, *, k ~j «l, then if k k
- l' - l, E„,(z) is also minimized when z „=z,*,
k' &j&l'. [Specifically, for k=0 and large
enough l, the set of summands in E» ~, (z(n)) is
identical to that in E„,(z), while z and z(n) have
the same coordinates outside the interval. ] So
each transformation z(n) - z(n + 1), n = 0, 1, . . . ,
leaves constant the total energy in the region
surrounding the changed variables. Suppose then
for our proposed ground state Z there was a local
transformation A of variables that lowered the
energy. Then there is some sufficiently large n
such that A could be applied with the same effect
to z(n). But then the original state z, by hypo-
thesis a ground state, could have its energy low-
ered by the transformation defined by the succes-
sion z -z(l) —... —z(n) -A(z(n)), a contradic-
tion. Thus our argument shows that z is a (per-
iodic) ground state, with period at most E =As.
This completes the proof.

A ground state S is said to be "isolated" if
E, , (z) attains a unique minimum, at z = Z, for
each k, l. Our proof shows the following:

Corollary. -~nly periodic ground states can be
isolated.
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