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~ith use of spherical geometry, a translationally invariant version of Laughlin's pro-
posed "incompressible quantum fluid" state of the two-dimensional electron gas is for-
mulated, and extended to a hierarchy of continued-fraction Landau-level filling factors
v. Observed anomalies at v=-,

7
are explained by fluids deriving fro m a v= 3 parent.

PACS numbers: 71.45.Nt, 72.20.Nt, 73.40.Lq

The quantum Hall effect (quantization of the Hall
resistance p„, = h/ve' at simple rational values of
v at low temperatures, together with a dramatic
fall in the sheet resistance p,„) observed in GaAs-
Ga„Al, „As heterostructures" may be explained
(naively) if the ground state of the two-dimension-
al (2D) electron gas in high perpendicular mag-
netic fields has no gaP/ess excitations (and hence
no dissipation at low temperatures) when the
Landau-level occupation factor takes one of the
quantized values v. This is trivially the case for
free electrons when v is integer, as seen in the
earlier experiments, ' but the effect (or its pre-
cursor anomalies) has recently been observed'
with fractional quantization, to date at v = —', , z,
» ~, T, » ~, and ~, all with odd denominators
(when v&1, the electrons are not fully spin-po-
larized; v= 3 3 values may be understood as the
v =1 effect for majority spins, plus the v=+ +
effects for minority spins). A "Wigner solid"
charge-density-wave ground state is expected'
at low occupations, but such a state has a gap-
less Goldstone mode because translational and
rotational symmetry (described by the Euclidean
group) is broken. A state without gapless excita-
tions may instead be characterized ' as an "in-
compressible quantum fluid, " and variational
wave functions of Jastrow form that describe
such states have recently been proposed by
Laughlin at occupations v = 1/m, m an odd inte-
ger.

The Laughlin wave functions are not translation-
ally invariant, but describe a circular droplet of

fluid, which must be confined in an external po-
tential. Laughlin circumvented this problem by
formally relating the properties of the fluid to
those of the classical 2D one-component plasma,
which has a thermodynamic limit, and calculating
plasma properties. In this Letter, I describe a
variant of Laughlin's scheme with fully transla-
tionally invariant wave functions, and extend it to
describe a hierarchy of fluid states with occupa-

tion factors given by the continued fractions

PB +
Qn

pa+

where m =1,3, 5, . . . , u; = + 1, and p; = 2, 4, 6. . . ;
this number will be denoted by [m, n, p„o.', p„
. . . , n„p„], and is a rational with an odd denomi
nator. The fluid state at v = [m,p„.. . , p„] cannot.
occur unless its "parent" state at v = [m, p„
.. . ,p„,] also occurs; whether or not a given
fluid state occurs will depend on the details of the
interactions. The experimentally observed
anomalies with v&1 correspond to [3,2], [3],
[3,-2], [1,2, -2], [1,2], and [1,4]; they all derive
from the m =1 and m =3 hierarchies.

The technical innovation that I make is to place
a 2D electron gas of N particles on a spherical
surface of radius R, in a radial (monopole) mag-
netic field B =@S/eR' (& 0) where 2S, the total
magnetic flux through the surface in units of the
flux quantum 40 = h/e, is integral as required by
Dirac's monopole quantization condition. This
device allows the construction of homogeneous
states with finite N; in the limit R, N, and S-~,
the Euclidean group of the plane is recovered
from the rotation group 0'(3) of the sphere.

Single-particle states The single-p. —article
Hamiltonian is

where M is the effective mass, and ~, = eB/M is
the cyclotron frequency. A = r && [-i R V + eA(r )]
is the dynamical angular momentum; V && A =BO,
0 = r/R. A has no component normal to the sur-
face: A ~ 5 = 0 ~ X =0; its commutation relations
are [A",A ] = ihe «(A~ -hSQ~). The generator
of rotations is instead given by L =A+ @SO:
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Il.",X ]=i&e &X~, X =L, Q, or &; this ~s a
normal component* L.0 = 0 ~ L =@S. This alge-
bra implies the spectrum I L I

' = O'I (I +1), I =S
+ n, n =0, 1,2, . . . , and that 2S is integral (the
Dirac condition'); I A I

' =
I L I

' —5 'S ' = @' ln (n +1)
+ (2n+ l)S). Q can be specified by spinor coordi-
nates u =cos(~8) exp(~i p), v =sin(~8) exp( —pip):
Q(u, v) =(sin8 cosp, sin8 sing, cos8). To describe
the wave functions, I choose the gauge A =(&S/eR)
&& P cot8; the singularities at the two poles (each
admitting flux Sc',} have no physical consequence.
The Hilbert space of the lowest Landau level
(I =S, with energy ~I~, ) is spanned by the co-
herent states $~„8&

' defined by (Q(o.', P} ~ Ljg~„s& '

=@Sf& a~~s&, these are polynomials in u and u of
total degree 2$:

(a, v) =(&* M+ P* u), I & I +I PI

Within this subspace, the electron may be repre-
sented as a spin S, the orientation of which indi-
cates the point on the sphere about which the state
is localized. ' The operator L can be written as
I.' = hu 8/sv, I. = hv 8/Su, I.' = ~h (u 8/su —u 8/su),
and S = ~(u 8/Su + v 8/Sv}; u and v may also be
represented as independent boson creation opera-
tors, and 8/8u and s/su as their conjugate de-
struction operator s.

Two particle states-. The opera—tor ( L, +L2I '
has eigenvalues O'J»(J»+ 1), J» = 0, 1, . . . , 2S;
the coherent states with J» = J, (Q(&,P) (L~
~ L,))g&„s&~s ~& —IJg&„»&&s ~&, have wave functions

p(~ s&
' ——(a~v @22 u~) II (u*ag + P* g)u

&
= l&2

Fermi statistics requires that 2$ —4» be odd, and
Bose statistics, that it be even. Note that the
factor u, u2 —M, u, commutes with L, + L,. If II~ is
the projection operator on states of the lowest
Landau level, the projection on rotationally in-
variant operators V(Q, ~ Q, ) (such as the inter-
particle interaction) can be expanded as

28
IisV(Q, Q, )IIs = Q V~~ &P~(I, + L,),

where P~(L) is the projection operator on states
with I L I

' = I 'J(J+ 1). In particular, IIs(Q, ~ Q,}ll,
=L, ~ L,/fS (S+1)j'; the smaller the value of 2S

the smaller the mean separation between
the particles, which are precessing about their
common center of mass at Q(o'. ,P)

X-Particle states. —In the spirit of Laughlin, '

I discuss the N-particle wave function,

= II (M ) u, —M, u ) ), S = pm {iV—1) .
i&j

The case I =1 can be alternatively expressed as
the antisymmetric Slater determinant describing
complete filling of the lowest Landau level, with
1V=2S+1. Because L„,=Q; L; commutes with

u&v, - -u, v;, +~~ ' is explicitly translationally and
rotationally invariant on the surface of the sphere:
L«, +„™=0. It is totally antisymmetric (Fermi
statistics) for odd m, and symmetric (Bose sta-
tistics) for even m. The Laughlin droplet wave
functions, centered at Q(n, P), can be recovered
by multiplying +„' by a factor g;(o."u; + P*v;)",
and taking the limit n -~, R —~, R'/2n = a,',
where a, = (&/eB) is the Larmor radius of the
lowest Landau level.

Remarks (1) 4.—'„,~ ' is an exact eigenstate of
any pair interaction Q«, (iisV(Q& ~ Q, ) lisj, be-
cause J» = J23= J» = 8=m; in the planar geome-
try, Laughlin's N =3 droplet states are reported-
ly not exact: Overlaps with numerically calcu-
lated exact eigenstates' (e.g. , 0.994 68 for the
Coulomb interaction, m =5) are close to, but not
exactly, unity. (2) for N ~ 4, m & 1, 4's~ & is not
an exact eigenstate of a general interaction poten-
tial: This would require that it is an exact eigen-
state with J&,. ——J of the angular momentum of any
pair of particles. The spectrum of values of 4;,
contained in +~ is easily determined by writing
it as the product of three factors (i) involving co-
ordinates i,j only, (ii) involving coordinates k
&i,j only, and (iii) the cross term II, (u, u;
-u, v, )"(u, u, -u, v,. ) which determines J&; '.

J;,. -m(N —2) =2S-m. The special character of
the states +„ is thus that they have no compo-
nents with J,, = 2S —m+ 2, 2S —m+ 4, . . . «28 that
would be present in a more general wave function
of the appropriate symmetry: The states of
closest approach of the pair of particles are sup-
pressed. In particular, when S = S(N; m)
—= ~ m (& —1), @„'may be characterized as the
exact nondegenexate ground state of the projec-
tion-operator interaction potential

&s, sils =+ ~ + P~(4+ L, )).
J &2m-m

This is essentially a kind of hard-core interac-
tion; +„will thus be a particularly good varia-
tional approximation for the ground state of sys-
tems with strong repulsion at close separations.

Excited states. —In this geometry, the natural
excitation operators, analogous to those suggested
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by Laughlin, 4 are

A.„(a,P) = g (Pu; —av;) ("holes" ),

A„(a,p) = g p* —a* ("particles" ),
9@i Bg;

which, respectively, increase or decrease the
flux quantum number S by ~, and decrease or in-
crease Q(a, P) ~ L „,by ~N@. The single-excita-
tion states A„(a tP)+~ ' and A„(a,P)+~~"' have
&z E

=
2 N and describe def ects in the f t.uid local-

ized around' Q(a, P). Since

[A„(atP),A~ (a', P')]

=[A~(a, P),A„(a',P')] =0,
the two-hole and two-particle states are symme-
tric in the excitation coordinates, and the excita-
tions thus obey Bose statistics (note, however,
that [A„(a,P), Att (a', P')]~0j. A state with
N~" particle and N~" hole excitations has S
=S(N;m)+ —,'(N„" —N~'"); on the other hand, if
the system is excited by addition or removal of
an electron at fixed magnetic field, the final state
has S = S(N+ 1;m)+ —,'m. The comparison indi-
cates that the hole excitations carry a fractional
charge e" =+ e/m, and the particles a fractional
charge -e*, as proposed by Laughlin. ' The de-
generacy N+ 1 of the single-excitation states
supports the same conclusion: In the thermody-
namic limit there is one state for each unit @

—= m@, = h/e * of magnetic flux through the surface.
Hierarchy of fluid states. Ewill assum—e, fol-

lowing Laughlin, 4 that for some m, the ground
state of the 2D electron gas with S = S(N; m) is
well represented by the approximate wave func-
tion +„™,and that there is a gap in the excita-
tion spectrum, the lowest-energy excitations be-
ing (bound) particle-hole pairs. Consider now a
slightly different field strength so that S = S(N;m)
+ —,N; the low-energy states at this field strength
can. be considered as deriving from the fluid state

with an imbalance of particle and hole ex-
citations, N'" = N„"—N~'". Since there is, by as-
sumption, a gap for making particle-plus-hole
excitations, the lowest-energy states will be-
long to a manifold of purely hole states (N") 0)
or purely particle states (N'"&0), separated by
a gap from higher-energy states. If the interac-
tion energy of the excitations is small compared
to this energy gap, the problem of constructing
the collective ground state of the excitation fluid
is precisely analogous to the original problem of
constructing the ground state of the electron fluid,

but with S replaced by 2 N, N replaced by iN" I,
and Fermi statistics replaced by Bose statistics.
A Laughlin fluid state of the excitations' can be
constructed if

2N = S(IN'"I; p),

where p is now even (Bose statistics): p =2, 4,
6, . . . . This leads to IN'"

I
= (N/P) +1; this second

family of fluid states thus can occur at field
strengths S = S(N;m, + p) =--,' m(N —1)+ —,

'
[(N/p) +1],

and requires that N be divisible by p. Ef this fluid
state exists, with a sufficiently strong gap, the
argument can be iterated by constructing a type-
[Ip, l, p, ] fluid state of the excitations of the pri-
mary type-[m] electron fluid, and so on; the hi-
erarchical set of equations is

S(N; m, p„.. .,p„)
= S(N;m) +2 IN'"I sgn(p, );

', N = S(IN-'" I; I p, I, p„.. .,p„).
The filling factor v is given by N/2S in the ther-
modynamic limit; the hierarchical equations be-
come

= m+sgn(p, ) v(l p, I,p„.. .p„),

with the solution

v(mt pl t ' ' 't pn ) [mt pl. t ' 't pn ]

The charge of the excitations is easily found by
determining how many are produced by adding an
electron at fixed magnetic field: The result is
that if v is expressed as the rational P/Q, Q is
odd, e*=e/Q, and the Hall resistance can be
written p„, =4'„/Pe *, consistent with Laughlin's
"gauge invariance" argument. '

The above analysis indicates how incompres-
sible fluid" states may derive from parent in-
compressible fluid" states at simpler rational
filling factors v; the most stable fluid states will
correspond to the simplest rationals with small
values of m and p&, where the fluid densities are
highest, and hence short-range repulsion effects
strongest. What is so far missing is a calcula-
tional scheme for the dir ect determination of
zvhet&e& a given fluid state exists for a given in-
teraction potential, e.g. , the Coulomb interaction.
The new formalism based on a spherical geome-
try may simplify this task. From a variational
viewpoint, ' the correlation energy of +„~ ' and its
excitations A„(a, p) tE'~' ' must be determined;
this reduces to (i) the determination of the ex-
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pansion coefficients VJ of the interaction poten-
tial, and (ii) analysis of the wave functions to de-
termine the relative weights of the components
with a given pair angular momentum 4;, Pro-
gress may be possible in this formalism. Beyond
the variational approach, the problem has been
reduced to a generalized version of an infinite-
coordination Heisenberg problem involving N

spin-S objects, and direct numerical calculation
of the low-lying energy levels at an increasing
sequence of values of N with S = S(N;m, p„.. .,
p„), coupled with a finite-size scaling analysis
of how the gap behaves as N- ~, may prove pos-
sible at simple rationals. It may be remarked
that, in this geometry, the gapless Wigner lattice
would also derive from an isotropic state I „,=0
as lV- ~: The sphere cannot be tiled with a tri-
angular lattice without introducing disclination
defects; these will be mobile, and will restore
translational and rotational invariance.
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