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Density-Functional Theory of Excitation Spectra of Semiconductors: Application to Si
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This Letter presents a general approach to calculation of the quasiparticle excitation
energies of semiconductors which includes the energy dependence of the self-energy with
a local density-functional approach. Both direct and indirect band gape in Si are in much
better agreement with experiment than are the bands from the ground-state theory. The
relatively large corrections arise only after the dielectric screening of the electron gas
is modified to account for a gap in the excitation spectrum.

PACS numbers: 71.45.6m, 71.25.Rk

By demonstrating the one-to-one correspondence
between the external potential v,„,(r) and the
ground-state charge density n(r) in a system of
interacting electrons, Hohenberg and Kohn' estab-
lished that all properties of the system may be
considered as functionals of n rather than v,„,.
This result has been utilized primarily in the
form of an approximate ground-state energy func-
tional using the local density approximation
(LDA). As a by-product of the calculations one-
electron-like eigenfunctions and eigenvalues are
generated which are used, without formal justifi-
cation, to interpret single-particle excitations.
Although for metals the correspondence between
"theory" and experiment is often quite reason-
able, LDA typically underestimates band gaps
in semiconductors and insulators by 30io-50'%%uo.

These results have engendered various theoreti-
cal attempts to go beyond LDA, such as "self-
interaetion corrections"' and the weighted (non-
local) density approximation (WDA). ' The former
approach seems to work well in atoms and in
wide-gap (atomiclike) insulators but its adaptation
to extended states remains an unsolved problem.
Because of numerical complications the WDA ap-
proach also has not been given a conclusive test
in extended systems (see below). Alternatively,
Levine and Louie' (LL) have proposed to modify
the dielectric function e(q, &v) of the homogeneous
electron gas to allow for the possibility of a gap
in the electronic excitation spectrum. They ob-
tained a one-parameter (energy gap) family of
LDA exchange-correlation (XC) potentials t. xc"
and found a small improvement of the band gaps

in Si.
Sham and Kohn' formulated a density-functional

theory of single-particle excitations ["quasiparti-
cles" (QP's)] and suggested a local-density sim-
plification (QPLDA) demonstrably valid in the
limit of slowly varying density. At the same time
Hedin, ' in a seminal study of the QP properties
of the homogeneous electron gas, argued in favor
of the "GW" (Coulomb hole and dynamically
screened exchange) approximation for the com-
plicated Coulomb self-energy. The QPLDA has
been applied only infrequently in detailed calcula-
tions, probably because the corrections are com-
paratively small in metals.

In this Letter we present a general approach to
the calculation of the QP excitation spectrum of
semiconductors, with application to Sj.. Our
QPLDA approach is based on the GW approxima-
tion and the LL model dielectric function. Our
approach has the same objective (the GW QP spec-
trum) as the recent study of diamond by Strinati,
Mattausch, and Hanke. ' Our theory is suitable
for semiconductors, however, while their ap-
proach appears to be limited computationally to
wide-gap insulators. We find that the calculated
QPLDA direct band gaps are widened by 0.5 to 0.8
eV over the LDA values, in close agreement with
experiment, and the discrepancy in the indirect
gap is decreased by &. These important correc-
tions result directly from the dielectric screen-
ing of the QP's peculiar to systems with an energy
gap.

The QP energies are solutions to the following
Dyson equation (k= 1):

[-V'/2m+ V„(r)]g(r)+ Jd'r'M(r, r'; E)g(r') =Eg(r),
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where t/„denotes the sum of ionic and Hartree potentials. Sham and Kohn introduced the Wentzel-
Kramers-Brillouin-type approximation for the mass operator

M(r, r', E) = It„(P(r), E —p+ p „(n(r)};n(r)) 5(r —r'),

where the chemical potentials, p and p, „, were introduced to line up the Fermi energies of the in-
homogeneous and the homogeneous system, respectively, and „ is the mass operator of the homo-
geneous electron gas in momentum space. The local wave vector P is determined by

P'/2m+m„(P, E- p. + i „(n};n)=E —p+ p„(n).

For a QP at the Fermi level, Eq. (3) is satisfied by P = k F and hence

5i4(kF, p.„;n) = y.„(n)—k~'/2m= pxdn),

(2)

where the XC part pic of the chemical potential is the usual XC potential in LDA. For semiconducting
systems we take the chemical potential to lie at midgap for both homogeneous and inhomogeneous sys-
tems.

The GW approximation of Hedin for „ is

l
Itp(P, E)

( ).
3

, (, (lp-p'I, E- ~')exp( i~'0&)d~', (5)

where the bare Coulomb interaction v(p') is screened by the dielectric function e(P', e'). In principal
',Q„should be solved self-consistently because the Green's function C is related to 3$„by the Dyson
equation

(6)

To make the calculation tractable SR„(p, ~) in Eq. (6) is approximated by SR„(k„p.„)= p. xc"~. To model
semiconducting behavior we introduce a direct gap E, in the single-particle spectrum:

(7)E(p}=p'/2m+ (E /2)sgn(p —kF)

in Eq. (6) and use the LL model dielectric function e""=e, "+ i e, "":

! 0, !ul (A&uF,

) !4)!) g4)
(6)

where w =(uP —A,'+F')'~'sgn~, ~F =kF'/2m, and e, (P, ~) can be obtained analytically by Kramers-
Kronig transformation; RPA denotes random-phase approximation. The function satisfies the f-sum
rules on e and e ' and reduces to the Lindhard function e '

(p, cu) in the metallic limit A. =O. Figure 1

illustrates that e "~ provides a very realistic model of both the P and cv behavior of screening in Si, for
which A. =0.4 is chosen' for the average valence-electron density (w, = 2.0) to fit the experimental value
of e(0, 0). For E, in Eq. (7) we use the zone-average direct band gap (3.5 eV) for Si. Integrations in
Eq. (5) were performed analogously to the procedure outlined by Hedin. '

Since considerable sophistication has gone into determining p. ~c""for the electron gas, we take ad-
vantage of Eq. (4) and write

II„(P,E; n) = Wxc ("}+[5}Ia(P,E; n) —34(k„, P.„;
and thereby use our model only fox the self ener-
gy 6„, which is small compared to pxc"". In the
present study the imaginary part of h„has been
neglected and the charge density is taken from a
self-consistent nonlocal pseudopotential" calcu-
lation. The resulting QPLDA eigenvalues, using
plane waves up to 11 Ry in the basis, near the
gap at I, X, and L are given in Table I. For
comparison the corresponding LDA results using
Hedin-Lundqvist" (HL) and LL exchange-corre-
lation potentials are shown, as well as values in-

&)I = i xc'"(~) + ~„(P,E; u}

! ferred from various experiments. The conduc-
tion bands are generally improved, often dramat-
ically. The X~" valence-band level is, however,
shifted somewhat below the accepted experimen-
tal value We hav. e a,iso listed the (di~ectfy meas-
ured) lowest direct transitions at X and L to il-
lustrate that the QPLDA gives large (0.5-0.8-eV)
corrections and essentially correct gaps at these
points. Introducing the effective gap into the
screening (X =0.4) gives roughly 75% of the cor-
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FIG. l. (a) The wave-vector (q) dependence of the model semiconductor dielectric function e""(q, 0) of Levine and
Louie, compared to the calculated values of Walter and Cohen (Ref. 8) and contrasted with the metallic (Lindhard)
counterpart. (b) The real part of e""(O, u) compared to experiment (Ref. 9) and contrasted with the metallic (&.~~d-

hard) counterpart.

rection (see Table l), with the remainder arising from the direct gap 8, in the zero-order QP spec-
trum [Eq. (7)].

In Fig. 2 we plot the self-energy correction aE„k =E„~& -E„~k vs E„k —p for several k points

TABLE I. Eigenvalues (in electronvolts) for states at j. , X, and L with

energies near the gap. The LDA eigenvalues result from our self-consis-
tent pseudopotential calculations for Hedin-Lundqvist {H0 and Levine-
Louie {LoXC potentials; QPLDA results utilized the charge density
using the LL XC potential, except for A. = 0, E~ = 0 which used a HL

charge density. Experimental values were taken from Stohr and Bross
(Ref. 11) except where noted.

HL

LDA

LL
A,= 0.0

=0

QP LDA
A.=0.4 A, = 0.4
E~=0 Eg=3.5 eV Expt.

vr~5'
r„'

C
2x"
4x'

L v

C

C
3

&min
L3& ~Lg
L 3~"~L 3
x "~x

4

0.00
2.55
3.55

—2.88
0.65
1~22

1.58
3+37
0.56
2.80
4.59
3.53

0.00
2.63
3.59

—2.84
0.80

—1.20
1.66
3.47
0.70
2.86
4.67
3.64

0.00
2.57
3..59

—2.89
0.66

~ 1~23
1.60
3.38
0.71
2.83
4.61
3.55

0.00
2.81
3.99
3 ~ 12
0.92
1%37

1.73
3.79
0.79
3.24
5.20
4.11

0.00
3.07
4.10

—3.17
1.07
1e37
2.01
4.00
0.93
3.38
5.37
4.24

0.00
3.3, 3.4

4.15
—2.9

1.25
—1.2+ 0.2

3.9
1.17

5.4, 5.5
4 25c

'Estimated from the low-temperature value of the indirect gap, 1.17 eV
(Ref. 12).

Ref. 13.
Ref. 14.
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FIG. 2. Scatter plot of the QP LDA correction ~„~
vs E -p, , for both semiconducting (SC., square sym-
bols) and metallic {MET., round symbols) self-ener-
gies. Also shown is the correspond%~~ curve (dashed
line) in the mean-density approximation (QPMDA).

In summary, we have used a realistic model
self-energy appropriate to a semiconductor to
demonstrate that including dynamical correlation

explicit excitation dep-endent corrections —sub-
stantially improves the calculated band structure
of Si. The theory is easily implementable in ex-
isting band-structure calculations and should be
useful in understanding the fundamental excita-
tions in many other semiconductors.
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90028) and the National Science Foundation (Grant
No. DMR 82-13768). Use of the computer facil-
ities at the University of Maryland and the Naval
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for both semiconducting (square symbols) and
metallic (round symbols) self-energies. Approx
imately linear behavior in the region ~E —p.

~

~ gap suggests that a primarily energy-dependent
correction is occurring. To investigate this no-
tion we have examined a mean-density approxi-
mation (QPMDA) consisting of evaluating b, at
the density (r,o "=2.06) which produces a plas-
mon in 1/e at the observed energy. The result-
ing self-energy (see Fig. 2) represents an exci-
tation-energy-dependent constant potential and
produced eigenvalues which differ from those of
the QPLDA by less than 0.1 eV. Therefore the
corrections we find are dominated by the energy
dependence of the QPLDA. This suggests to us
that nonlocal-density (i.e. , energy-independent)
generalizations alone will not succeed in giving
substantially improved (over LDA) QP bands.

This conclusion may seem inconsistent with
the %PA calculation of Kerker, "who found sub-
stantial corrections in Si. To make the numeri-
cal calculation tractable, however, Kerker intro-
duced an Ansatz which increases the Kohn-Sham
exchange (n = —',) to Slater exchange (n = 1) for a
homogeneous system and correspondingly in-
creases the correlation potential. This increas-
es the gap in Si but since it is incorrect in the
homogeneous limit, it does not appear to repre-
sent a fundamental advance in the theory.
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