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Theory of Spontaneous-Emission Line Shape in an Ideal Cavity
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The spontaneous-emission spectrum of an atom in an ideal cavity is calculated.
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A single atom is an ideal "laboratory" in which
to study the interactions of matter and radiation.
The most fundamentally quantum mechanical of
these intereactions is responsible for spontaneous
emission. The nature of spontaneous radiation in
free space is well known, but this is not the case
if the radiating atom is enclosed in a cavity. '

Recently Kleppner' has proposed a microwave
cavity experiment very far from resonance. He

has emphasized the possibility of greatly sup-
pressing the spontaneous emission rate of a Byd-
berg atom whose preferred (also microwave)
transition frequency falls in a spectral region
where the cavity mode density is much lower than
the free-space density of states. Greatly de-
creased natural linewidths are one expected con-
sequence.

It is not generally realized that a fully quantum
mechanical theory of natural linewidth under
idealized cavity conditions has never been given.
We will mention below the principal reasons for
this. In this Letter we present what, to the best
of our knowledge, are the first fully quantum
mechanical predictions about the spectrum of
spontaneous emission into a lossless cavity, by
an atom with an isolated transition frequency.
The atomic transition frequency may be arbitrar-
ily near to, or many linewidths away from, a
single, similarly isolated, cavity resonance line.
We show not only that quantum theory makes
strikingly different predictions from the corre-
sponding semiclassical (nonquantized electro-
magnetic field) theory, ' ' but also that the pre-
dictions of quantum theory do not always corre-
spond to those of "everyday" (QED) in which the
natural radiated line shape is Lorentzian and the
population of the radiating level decays exponen-
tially in time.

Several unusual eomplieations arise in any
study of this problem. The first concerns the
meaning of the term spectrum, and the role of
the atom's two-time dipole autocorrelation func-
tion D(t, T)= (d' '(t+ 7)d" (t)). Its value at ~=0
gives the time dependence of the emission pro-
cess. Under normal circumstances, at steady
state, when D is a function only of 7., its Fourier

transform is the emission spectrum.
In any ideal lossless case, however, this rela-

tion between correlation function and spectrum
fails. This is the first complication that must be
dealt with, and it arises because we are inter-
ested in precisely the situation where relaxation
is absent, or is barely active. There is no time
f after which D(t, ~) depends only on ~. Thus the
dipole correlation function, and the emitted radi-
ation, cannot be stationary. Until recently there
was no acceptable definition of spectrum for non-
stationary radiation. We will use here the "phys-
ical spectrum" of Eberly and Wodkiewicz, 4 which
is based directly on an idealized analysis of spec-
tral mea sure ment.

A second complication arises from the strong
but loss-free coupling of the atom and the cavity.
This is what is responsible for any lengthening of
radiative lifetime, and spectral narrowing. It is
necessarily present even if the atomic frequency
is far from resonance or below the cavity cutoff.
A perturbative analysis of the radiation-matter
coupling will not be accurate, despite the small-
ness of e'/Rc. Therefore nonperturbative theo-
retical methods are necessarily required for a
satisfactory analysis of fhe correlation function
and the spectrum.

A third complication involves the type of be-
havior that is expected of the atom. It is clear
that lifetime lengthening is accomplished only at
the expense of changes in the character of the
emission. That is, an extremely low density of
radiation modes in the working region not only
increases the atomic lifetime, but also changes
qualitatively the nature of the radiation process.
We have pointed out elsewhere' some of the un-
expected aspects of an atom's response to quan-
tized single-mode radiation.

With these three issues in mind, we now de-
scribe our calculations and our predictions re-
garding the spectrum. The Hamiltonian (in the
rotating-wave approximation) governing the inter-
action of an isolated atomic transition and an
isolated cavity mode is given by'

fi~„o„+Fix, a, ~a, + AA(8„-a, + a, ~&„). (l)
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Here 6 „ is the operator of the atom that equals !m) (n! at t=O (i.e., &» is the raising operator from
level 1 to level 2, etc. ) and a, and a, ~ are the usual radiation mode operators. All operators are un-
derstood to be in the Heisenberg picture. The coupling constant A. , assumed real for simplicity, de-
pends on the transition dipole matrix element and mode polarization, cavity volume, etc. , as usual:
Z = [2mb(u, /V]'l'e d .

The dipole correlation D(t, ~}that is needed is proportional to (&»(t+ ~}o„(t)), and the atom's radi-
ated power spectrum is given, apart from an arbitrary normalization factor, by

:T T-T
S(m) =2y He d7. exp[y —i (u —&u, )] T f dt'e xp[-2y(T-i'}]D(t', T).

Here T is the length of time the excited atom is in the cavity, i.e., S(~)=0 for T ~0. The parameter
y is the half-bandwidth of whatever spectrometer is being used to measure the spectrum (here as-
sumed for simplicity to be a scanning Fabry-Perot interferometer)

We have used methods appropriate to Hamiltonian (1), especially those of Ackerhalt, ' to solve the
relevant Heisenberg equations exactly. We have obtained an expression for D(t, ~) that is exact to all
orders of the radiation-matter coupling, for all values of t and 7, and for all values of the atom-cavity
frequency mismatch 4= ~» —~„ including exact resonance ~=0. As anticipated, D is not stationary:
D(t, T) xD(0, T}. This is evident even in the simplest interesting case where (see Fig. 1)

D, ,(i, 7 ) = (2 v, ) '
exp[i (&u, + ~/2) v ] j(v, + ~/2)' exp(iv, T ) + ( v, —a/2)' exp(- i v, 7 ) + 2A. ' cos [v,(2t 7)]—).

Here the subscripts + and 0 indicate that the atom
was excited (+) and the field was empty of photons
(0) in the initial state; and v, = [(z/2)'+ A, ']'l'.
The corresponding expression for D,(t, 7. ) van-
ishes identically, as should be expected. Note
that the population of the upper level [which is
proportional to D, ,(t, 0)] does not decay expo-
nentially but oscillates instead at the frequency
v,. Both D, , and D, would vanish in a semi-
classical theory of the kind used in the earliest
studies of cavity emission, ' in which the radiation
field was not quantized. Ne have also computed
D, „(t, r) where u signifies the amplitude of any
coherent radiation present in the cavity initially.
In this way we ean model the experimental pos-
sibility that there may not be exactly zero pho-
tons in the cavity when the atom enters. The ra-

S((o)- y + 2[((u —(u„)'+ y'] '. (2)

This is the ease Kleppner' has proposed to study,
and if y &A/2, where A is the free-space Ein-
stein spontaneous-emission coefficient, our re-
sult agrees with his prediction of line narrowing.

Case (2). Pure long-time vacuum spectrum,
atom near to resonance [o. =0; y, A. » 6» T ']:

!diation spectrum associated with D, (i, v) de-
pends in a complicated way on the various param-
eters involved, and we present graphical results
below.

There are two limiting cases of general interest,
which we can describe analytically first.

Case (1). Pure long-time vacuum spectrum,
broadband detection, atom far from resonance
[e=O; 6»y, A, »T ']:

S((u) - y+ 2f (y, A )[[(&u- &u, —A )'+ y') '+ [((u - (u, + A )'+ y'] '].
In the broadband detection limit (y» A. ) we find

f =-, and (3) is essentially identical with (2). How-
ever, in the narrow-band detection limit (y «A),
f =& and (3) shows a completely new feature. In
this case there are two resolved peaks in the
spectrum, at ~= ~, +A. . We call this result vacu-
um-field Rabi sPlitting, where 2A. plays the role
of Babi frequency. It is reminiscent of the flu-
orescence line splitting predicted in the presence
of an intense laser field by Mollow' and others
and observed recently, ' but it is not the same be-
cause it occurs here in the absence of a cavity
fi eld.

We will discuss in detail elsewhere situations

in which the "expected" characteristics of the
atom's fluorescence spectrum are either absent
or overshadowed by special features of the QED
cavity interaction. Here we mention briefly the
two examples that may be of most interest in de-
signing possible experiments: the vacuum-field
Babi splitting predicted above, and the influence
of nonzero initial cavity excitation on line narrow-
ing.

In Fig. 2 we show a series of predicted spectra,
each one for a different value of the frequency
mismatch 6, between the cavity and atom. As A

increases, the vacuum Rabi splitting also in-
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FIG. 1. A view of the dipole autocorrelation function

D+, o(t, T) showing its dependence on t as well as 7-.

The tilde indicates that the rapid oscillation at ~, has
been eliminated.

FIG. 2. A set of vacuum spectra, for which T = 20 A. ',
for values of atom-cavity detuning on a logarithmic
scale from 4= -' (back line) to 6= 10 (front line). Forio
small detuning the vacuum Rabi splitting is evident,
and for large detuning the spectrum shows pure fluo-
rescence. In between, one sees weak Rayleigh-type
scattering at a position near cu = ec.

creases. At the same time one of the spectral
peaks grows smaller. If the atom were in free
space, this would be the Hayleigh scattering peak.
In the limit, as 6 grows very large, only the
"fluorescence" peak remains, and the spectrum
has the character predicted by the approximate
expression (2), consistent with the estimates of
Kleppner, for example.

Figure 3 shows the effect, on the emission line
shape, of any radiation that may already be in the
cavity at the time the atom enters. The various
spectra correspond to different values of the in-
itial field strength. In the figure the cavity and
the atomic transition are assumed exactly at reso-
nance with each other. For small enough' values
of initial field strength, vacuum-field Habi split-
ting is evident. However, for larger values a
transition region is evident where the vacuum-
field splitting is obscured, before a different type
of spectral shape emerges, a triplet of peaks.
This triplet is, in fact, the exact analog of the
intense-laser line splitting referred to above. ' '
Spectra analogous to those shown in Fig. 3 have
been calculated for an initially excited free-space
atom. " They do not show doublet structure for
weak initial fields.

In this short discussion we have (I) identified
the complications that must be dealt with in a
proper QED theory of the emission spectrum as-
sociated with atoms in ideal cavities; (2) con-
structed a moderately realistic quantum model
for atomic emission in a cavity that includes the
atom-cavity interaction and the spectral detec-
tion process; and (3) presented the new predic-
tions of this theory for both the (necessarily non-
stationary) dipole correlation function and the

atomic emission spectrum.
Finally we emphasize the similarities as well

as the strong qualitative differences between the
predictions made here for spontaneous emission,
using a consistent quantum theory of the atom-
cavity interaction, and the predictions of "every-
day" QED. There is a "familiar" domain (far
from resonance) as shown in (2). Here the spec-
tral emission line is indeed narrowed, and its
width is limited only by the resolution of the spec-
trometer, in the ideal situation considered. How-
ever, there is another domain (near to resonance)
in which atom-cavity line splitting is predicted by
(3). And there is also a domain, predicted here
for the first time, which refiects (see Fig. 3) the

IO'
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FIG. 3. A set of spectra, for which T = 20K, ',

showing the influence of coherent radiation already
present in the cavity at t = 0. The parameter 2n,
which increases by the factor 10o' from spectrum to
spectrum, is the effective Rabi frequency of the field
initially in the cavity. The transition from bvo-peak
vacuum Rabi splitting (small n) to three-peak ac Stark
splitting (large n) is evident.
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presence of any residual cavity excitation at t
=O. Such a prediction may possibly have rele-
vance to actual experiments in which the cavity
is not truly empty of photons at the outset of the
observations. These two latter domains are
joined by a region of complex atom-cavity co-
herence, which we will have to discuss elsewhere.
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