
VOLUME 51, NUMBER 7 PHYSICAL REVIEW LETTERS 15 AUGUST 1~)83

Faddeev-Popov Zeros and Confinement of Color in a Hyperspherical Gauge Model
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A new rotationally invariant Hamiltonian method, formulated on a four-dimensional
hyperspherical surface, is proposed for the numerical study of quantum gauge field
models. It is shown that in the Coulomb gauge it is sufficient, as well as necessary, to
restrict transverse potentials to the zero-free domain of the Faddeev-Popov determinant.
Numerical studies of an SU(2) model support Gribov's suggestion that the zeros provide
a natural way to understand the origin of confinement.

PACS numbers: 11.15.-q, 11.10.Ef, 12.35.Cn

The numerical study of lattice gauge models"
has provided information about the origin of color
confinement' and even about the masses of phys-
ical particles. " However, introduction of fer-
mions is not straightforward, and it is uncertain
how big the lattice should be in order to give re-
liable results. ' It is therefore useful to consider
alternative approaches, which may give comple-
mentary information. Direct numerical solution
of the Schrodinger equation is feasible if the num-
ber of degrees of freedom is limited through use
of a limited spatial domain and a short-wavelength
cutoff. Here, the spatial domain is taken to be
the surface of a four-dimensional hypersphere.
Adler's Lagrangian formulation of massless elec-
trodynamics, in which space-time is represented
by the surface of a five-sphere, has many useful
similarities. The hype rspherical domain has
several advantages: The calculations have mani-
fest rotational invariance in all levels of approxi-
mation, O(4) group theory can be used to evaluate
matrix elements, and the distinction between long-
itudinal and transverse fields has a simple group-
theoretical interpretation.

The existence and importance of zeros of the
Faddeev-Popov determinant were pointed out by
Gribov, ' who emphasized that the zeros give a
constraint on field variables which provides a
confinement mechanism. In the Hamiltonian ap-
proach, Gribov's constraint leads to a picture of
confinement which is complementary to the Wil-
son-loop' scenario of the thermal-lattice method. '
A numerical study of the zeros is carried out in
this work. This study indicates that the longitu-
dinal and transverse propagators do have forms
consistent with confinement. Kith use of a simple
"model determinant" and other approximations
similar to those of Gribov, ' some low-lying states
are then examined; the lowest excitation has a
finite mass and a finite size.

In the Coulomb gauge, the Hamiltonian is"
g=' fdic(E 'E~ EE"+B~.B~j

+z fd 0 Jda 'E '& "(r')FC" (r ', r) g (r),

where g"=-f" &'A .E&, and A, E, and B are the
usual transverse potentials and fields. The long-
itudinal propagator, which gives the Coulomb po-
tential, is C=k '(1 D) 'k -', where k=(-V')' ',

~= —k 'gf &A & Vk ', and the Faddeev-Popov
determinant is I' = det(1 D). He-reafter, color
indices will be omitted.

To transcribe the Hamiltonian onto a hyper-
sphere, it is necessary to consider scalar and
vector functions of the unit vector r", and also
properties of derivative operators on the hyper-
sphere. A unit radius is used, because there is
no other scale in this model. It is convenient to
use a four-dimensional notation, with the con-
straint that all vectors should be tangent to the
hypersphere. Although the general properties of
O(4) are widely known, and many detailed formu-
las are also available, "most of the specific re-
sults needed here have not been discussed ex-
plicitly. It is useful to employ tensor methods,
and also, especially for evaluating matrix ele-
ments, the SU(2) 43 SU(2) decomposition. Scalar
harmonics S'~ "'~ correspond to the representa-
tion (s/2, s/2), while vector harmonics V, '~ ~ "~
correspond to the pair ((v+1)/2, (v —1)/2) and

((v —1)/2, (v+ 1)/2), which have opposite handed-
ness. Since both ~.V and V V are functions only
of r", and must be antisymmetric in b and any of
the a' s, they both vanish. Thus V is tangent to
the hypersphere and satisfies the transversality
condition; the set of orthonormal vector func-
tions V provides the correct basis for expansion
of the transverse fields: A =Q„„q„„V„„.The sum
over v is cut off at a value A. Likewise, the S's
provide the basis for the operators C and D,
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which is also cut off at s =A. With inclusion of
the SU(2) color degeneracy factor, the dimen-
sionalities of the scalar and vector representa-
tions are respectively M, = 3(s+ 1)' and N„= 6v(v
+ 2). On the hypersphere, the V' operator be-
comes simply the angular part of the ordinary
four-dimensional Laplacian, leading to k(s)' = s(s
+2). Similarly, it can be shown that curlV„
=+(v+1)V„, where the sign defines the handed-
ness.

Note that k(s) vanishes for s=0. To avoid hav-
ing an infinite energy, the total color charge & of
physical states must vanish. When this constraint
is satisfied, the s = 0 mode can be dropped, be-
cause the gradient operator which appears in D
insures that there is no coupling between longitu-
dinal modes with s&0 and the mode s=0.

Following Gribov's work, there have been sev-
eral investigations of the Faddeev-Popov ze-
ros."" It is understood that the transverse po-
tentials must be limited to a connected domain 6
whose boundary is the first zero encountered as
the potentials are increased. Zwanziger" has
shown that this domain C is convex and bounded.
The zeros of E correspond to eigenvectors of D
which have a unit eigenvalue. Since D is a linear
function of the q's, the eigenvalues d of D for
some fixed q„„are inversely proportional to the
relative distances from the origin to all the vari-
ous zeros, for q,„which have the same ratios.

In general gauges, it is not known whether re-
striction of the field variables q to the domain 6
is sufficient as well as necessary. '" That is, it
has not been proved that each distinct point of C

corresponds to a distinct physical situation. In
the Coulomb gauge, however, it suffices to show
that each distinct point of G leads to a distinct
longitudinal propagator C, because then some dis-
tributions of external color charges will give dif-
ferent energies. The matrix C is determined by
its eigenvectors, which are the same as those of
D except for the simple weighting factors k(s),
and by the eigenvalues c= (1 —d) '. Within G, all
eigenvalues satisfy d & 1, and therefore are
uniquely related to the eigenvalues c. The q's
are linearily independent, and determine D unique-
ly. Within G, therefore, C is uniquely related to
the q's. This argument fails if one goes outside
of G, because then there will be some d & 1.

A quantitative study of the Faddeev-Popov de-
terminant E, by itself, can give useful informa-
tion about the structure of the vacuum. Gribov
pointed out that the amplitudes of long-wavelength
modes (small v) should be constrained to very

small values by the zeros of E, while the short-
wavelength modes should be unaffected. Accord-
ing to asymptotic freedom ideas, the free-field
behavior (q') =1/2(v+1) should be found for large
v. To check these points, the first step is to see
how the distance to the nearest zero depends on
the ratios of the q's.

Let Q„'=Q„q„„', where here and later the in-
dex n includes the color variable. For explora-
tion of the properties of E, randomly oriented
iV„-component vectors q„„have been chosen, with
fixed lengths: Q„'= (Q„'), where (Q„') is an
iteratively determined self-consistent mean val-
ue. A narrow-band approximation (NBA) is used,
in which E4' is assumed to be concentrated near
(Q„'). The largest eigenvalue d determines the
first zero, and a first-order perturbation calcu-
lation determines how the zero shifts if the q„„
are changed slightly. The results of these cal-
culations can be summarized by a simple ap-
proximate formula for the locus of the zero:
Z(q)=1 —o.+„U„Q„'/N„=O, where o. =g'/4m, and
where the U„depend weakly on the q,„, and have
the approximate value &. More precisely, the U,
differ by about 10'lo-25~/~, being smallest for v

=A. The constraint this gives on the q„„ for
small v is consistent with Gribov's estimates
and remarks, and also shows directly that the
transverse propagator is damped for large space-
like separations, although the precise amount of
damping, and the behavior for timelike separa-
tions, require finding the eigenstates of B.

The distance to the nearest zero fluctuates
around the value given by Z(q) by about 3%, for
A =4; these fluctuations decrease as A increases.
The average separation between the first and sec-
ond zeros, and between the second and third, is
about 6/g for A =4, and also decreases with in-
creasing A.

The quantity

averaged over the q's, gives the ratio of the long-
itudinal propagator to the free-field propagator.
Gribov conjectured that fields very near the
boundary of G dominate the vacuum state; this
suggests the approximation g, (s) =Q (p, )'/M„
where y is the eigenvector for the first zero.
Values of Jl,(s) are plotted versus k(s)' in Fig. 1.
These values have a sampling error of a few
percent. The e dependence is a secondary ef-
fect, and in comparison is not significant. A

linear potential would correspond to a unit slope
on this graph; the slope for A, is actually some-
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FIG. 1. Ro(s) vs k~(s) for n = 5. The points are con-
nected by a solid line for A = 6, by a dashed line for A
= 5, and by a dotted line for A = 4.

what greater. The second and third eigenvectors
give very similar values for A,(s), and so this
behavior should be obtained over a sizable region
near the boundary.

The next step is to calculate E in the self-con-
sistent band Q„'= (Q„'). At the same time, the
inverse of j.-D is calculated, giving values for
the derivatives of E. A reasonably good approx-
imation to I'in the NBA is given by the following
simple formula:

E,pp„„=fOZ (q)exp(- Q „p„Q„'),
where f, is a constant and the p„are chosen to
reproduce the correct derivatives. The expo-
nential factor represents the effect of more dis-
tant zeros in a form which is tractable for sub-
sequent numerical calculations. The coefficients
p„drop off with increasing v, but not as rapidly
as the factors U„/A„ in Z(q).

Following Gribov, ' for an initial examination of
the properties of low-lying states the charge fluc-
tuations are neglected, along with the self-coup-
ling terms in B. Hartree-like wave functions of
the form e = g„g„(q„„)are used. The equations
for g„are decoupled and involve an averaged de-
terminant for the vth sector:

~,(Q„')=f....(Q.') exp(-P„Q„').
In the NBA, the effective zero factor takes the
form z„(Q„'}=1—Q„'/Q, „'. The Schrodinger
equation for P„has O(N„) symmetry, and the
charge operator in the vth sector is an O(N„) gen-
erator. Along with the ground state and the radial
excitations (A. =0), only certain excitations with
A. ~ 2 avoid having a net color charge, where A. is

6
8—

FIG. 2. Results of calculations for A= 5 (dashed
lines) and A= 6 (solid lines) for 0, = 5 6 and 7 as in
dicated (a) M. ean value (q„); (b) excitation energy
W„ for A, = 0.

the O(N„) orbital quantum number.
An adequate estimate for the energy of orbital

excitation is W„= A(A. +N„—2)/2(Q„'). For A. =2,
this becomes W„=1/(q„„'). The energies of
radial excitations, which correspond to helicity-0
particles at rest, are harder to calculate. If the
zero-factor z„ is dropped, the equation for g„
has a harmonic-oscillator form, giving the ener-
gies E„„=ne„+N„(ro„-p„}/2, or W„=2&v„,
where &u„'=(v+I)'+ p, '. At Q„=Q,„, the free
boundary condition E„P„'=0 is used (this differs
from Gribov's treatment). If Q,„ is small,
will be nearly constant in the ground state, but
must vary rapidly if there are nodes. Thus, both
factors in F act to decrease the electric and mag-
netic energies in the vacuum state, and to in-
crease the electric energy in excited states. This
is consistent with the idea that asymptotic free-
dom and confinement are associated with diaelec-
tric and paramagnetic" properties of the vacuum.
For numerical calculations, it is convenient to
use trial wave functions of the harmonic-oscil-
lator type. This gives integrals which can be
expressed in terms of confluent hypergeometrie
functions. Some results are displayed in Fig. 2.

In Fig. 2(a} the mean value (q„„') is plotted for
several values of e and A= 5, 6. This shows the
reduction of (q„„')for small v, a.nd the approach
to the free-field behavior for large v. The ener-
gy needed to excite the vth A. =0 mode, 8"„, is
plotted in Fig. 2(b) for the same parameter val-
ues. The excitation energies for A. =2, as esti-
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mated by 1/(q '), are similar. For large v,
the free-field energy H „=2(v+ 1) is obtained, but
for these values of e, the minimum occurs at an
intermediate value of v and is greater than the
free-field minimum energy 8'y 4 As expected,
the minimum is raised and shifted to a larger v

when n is increased, indicating that the confining
potential has been stiffened. Both parts of Fig. 2

show a sizable difference between A= 5 and g~=6.
This is an illustration of the antiscreening effect;
the effective coupling constant is substantially
larger when A is increased.

All features of these calculations support the
principle of color confinement. Although some of
Gribov's approximations and assumptions have
been dropped or modified, his main conclusions
have been confirmed. For more quantitative re-
sults, in particular to estimate the string tension
and the glueball spectrum, it will be necessary
to examine carefully the remaining approxima-
tions.
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