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Phase Transitions in New Solvable Hamiltonians by a Hamiltonian Minimization
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By minimization of a Hamiltonian with respect to its interaction parameters, new
Hamiltonians are generated. The same minimization procedure is carried out with the
free energy of the initial Hamiltonian, and it is proven that in the thermodynamic limit
the minimized free energy is the free energy of the minimized Hamiltonian. This method
is illustrated with two-dimensional Ising models generalized to include both nearest-
neighbor bonds and infinite-range bond-bond interactions. New critical behavior is ob-
served.

PACS numbers: 05.70.Fh, 05.50.+q, 05.70.Jk

There are only a limited number of phase-
transition problems, such as the two-dimensional
Ising and vertex models, for which exact solu-
tions to the free energy are known. ' In this pa-
per, a method is proposed for obtaining new solv-
able Hamiltonians by generalizing Hamiltonians
that are solvable. As an application of this meth-
od, the nearest-neighbor Ising model is general-
ized to also include infinite-range bond-bond in-
teractions. Similar Hamiltonians have been en-
countered in the context of compressible Ising
models. ' ' New critical behavior is observed in
the vicinity of the Ising critical point. A general
feature of this procedure is that the new interac-
tions generated are of infinite range, and thus it
is particularly suitable to the study of competing
short-range and long-range interactions.

The interaction parameters of a Hamil. tonian
can be made functions of a set of variables. A
formal minimization of the Hamiltonian with re-
spect to these variabl. es generates new Hami1. —

tonians in which the operators are functions of
the operators in the initial Hamiltonian. It is
proven that in the thermodynamic limit the oper-
ations of taking the thermodynamic trace and
maximizing the partition function commute. Thus,
the free energy of the new (minimized) Hamil-

tonians is simply obtained by minimizing the free
energy of the initial Hamiltonian with respect to
the same set of variables. Manipulating the free
energy c1ose to a critical point can change the
nature of the phase transition. " For example,
hidden variables that put constraints on a Hamil-
tonian can cause renormal. ization of exponents. '
Minimizing the free energy can result in similar
changes. However, the minimized free energy
now corresponds to a real. Hamil. tonian.

Consider a Hamiltonian 3C,(x)," describing a
system of N discrete classical spins, in which
the energy levels E„(x)are functions of a varia-
ble x. Such a variation in energy level. s can be
obtained by making the interaction parameters
dependent on x. The partition function obtained
by summing over all. possible spin configurations
wil. l. also depend on x,

Zo(x) = Tr(exp[ —ko(x)] j=g„g„exp[-E,( )1x(1)i

where(g„) are the degeneracies of the energy
levels (a factor of P =1/hT is absorbed into ko).
For the simple discrete-spin systems considered
in this paper, such as Ising and Potts mode1. s in
a uniform fiel.d, the degeneracies g„are inde-
pendent of x (apart from the trivial, cases of en-
ergy crossing). Also, we consider only cases
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where each energy level E„(x) is minimized for
a single value x„, such that &E„/&x=0 at x=x„.
The set of minimized energy level. s (E„(x„)jde-
scribe a new Hamil. tonian K, which will be re-
ferred to as the minimized Hamiltonian. The
(x„j can be regarded as the values of an opera-
tor x that minimizes Xo(x), i.e. , the solution to
&X,/&xi„„- = 0. The minimized Hamiltonian is ob-
tained by substituting the operator x in the origi-
nal Hamiltonian, X = X,(x). This operation sim-
ply puts together the minimization of the individu-
al. level. s, and will. be clarified by actual exam-
ples further on. The partition function of the
minimized Hamiltonian is

Z= Tr(e ~j

=Kg„p[-E„(„)) = r. m[-E.( .)], (2)

where the subscript a denotes the dominant term
in the sum. Indeed, in the thermodynamic 1.imit
(N —~) this largest term is sufficient to describe
the partition function. ' This result is val. id as
long as lim~„,(l n%) /N = 0, where K is the number
of energy l.evel. s. The original. partition function
Z,(x), on the other hand, is maximized for a par-
ticu1.ar value x:

Z,(x ) = Q„g„exp[-E„(x)])Z,(x).

Since each x„minimizes E„(x), each term in the
sum in Eq. (2) is larger than or equal to the cor-
responding term in Eq. (3), and hence Z)ZO(x).
But x maximizes ZD(x) and hence

results can be genera, lized to a set of variables
(x;j, and to continuous-spin systems. A number
of examples mill. now be considered in order to
illustrate this method and its appl. ications.

The simplest example of this method is the
derivation of the familiar equations of mean-field
theory starting with a Hamiltonian X,(x) = Nx'/2 J
—(h, +x)Q,.v;, describing a set of N decoupled
Ising spins. The Hamiltonian has N+ 1 energy
l.evels depending on the magnetization m =Q, v, .
The energy levels E (x) = Nx'/2 J —(h+ x)m each
have a minimum at x =(J/N) rn, and the corre-
sponding degeneracies

N —m 2

a,re manifestly independent of x. The minimized
energy levels are E (x ) = —(J/2N)m' —hm. The
minimized Hamil. tonian is obtained by setting
BX,/Bxi„„- equal to zero as

-=zx = —g,.v,. ;

X=X,(x)= — Qo,.v,. -hp 0,
f J

The Hami1tonian X describes an Ising model sub-
ject to equivalent-neighbor interactions (J/N)o, v, .

The free energy for X,(x) is

F,(x) = N [x'/2 J—ln2 cosh' ( h+ x)],
and hence the free energy for X is given by

Z~Z„(x) oZ, (x.) og, exp[-E, (x, )]. (4) F = N min[x'/2 J—ln2 cosh(h+x)] „,
In the thermodynamic limit, Z = g. exp[- E,(x,)] ~

Hence, it is proven that in this limit Z = Z, (x );
that is, the partition function (or free energy) of
the minimized Hamil. tonian X is given by the max-
imized partition function (or minimized free en-
ergy) of the original Hamiltonian X,(x). In other
words, in the thermodynamic limit the operations
of taking the trace and maximizing with respect
to x commute with each other:

Z = Tr(max(exp[- X,(x) ]j„)
= max(Tr(exp[-X, (x)]j)„.

This result reflects the fact that taking the ther-
modynamic trace is just another maximization of
g„exp[-E„(x)]with respect to n, which obviously
commutes with the other maximization wi. th re-
spect to x. The value of x that maximizes Z,(x)
is the expectation value of the operator x in the
Hamiltonian X. With some modifications these

which is clearly the mean-field-theory expres-
sion for the free energy of the Ising model. . The
relation between the equivalent-neighbor Ising
model and mean-field theory is well. known. '

In the above example the initial Hamiltonian in-
volved an operator 6=+,v, , whil. e the minimized
Hamiltonian included the additional operator fj'
= Q, ,o,.o, . This new (equivalent-neighbor) inter-
action can be used in the study of competition be-
tween short-range and long-range forces. Such
competition has been studied in other contexts by
different (and often more cumbersome) meth-
ods." Simi. larly, various other powers and
functions of 8 can be constructed. The operator
6', for exampl. e, corresponds to three-point in-
teractions, while i 6 )'i' cannot be regarded as a
simple interaction, although it is a 1.egitimate
many-body operator. If the initial. Hamiltonian
includes operators 6, and 6„ the minimized Ham-
iltonian can include products of these operators.
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The main difference between this method and
traditional. forms of mean-fiel. d theory" is that
the function to be minimized does not have to be
analytic [and indeed will have nonanalytic terms
if X,(x) has phase transitions], and hence new
forms of critical behavior not encountered in
mean-field theory can be observed. " Also, this
result provides a clear and direct method for ob-
taining the Hamiltonian, and the free energy that
describes it exactly.

A nontrivial. exampl. e is provided by the nearest-
neighbor Ising model. s generalized in the same
fashion. Starting with a Hamil. tonian
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X,(x) = —(K +x)P o,.oz,

the minimized Hamil. tonian is given by

JX=-Kg o,.o,, — Q (x,.o,o„o„
&U& &4&.&~r &

describing the nearest-neighbor Ising model sub-
ject to additional. infinite-range bond-bond interac-
tions. Such interactions do arise and have been
studied in the context of compressible Ising mod-
els."'~ The free energy per spin is

f(J,K) = min[fc(K+x)+x'/2Z]„,

where f, is the free energy of the nearest-neigh-
bor Ising model. The optimal value of x is the
sot.ution of

x = Jfo'(K +x—). (1o)
In particular, we consider the cases of the one-
dimensional Ising model. ,"and the two-dimen-
sional. Ising model. s on the square" and triangular
lattices" for which exact solutions are known.
Phase diagrams are given in Fig. 1. (The one-
dimensional problem can be mapped onto the
Hamiltonian in Eq. (6) by a simpl. e change of var-
iables and is not particularly interesting [Fig.
1(a)].] The phase diagram on the square lattice
[Fig. 1(b)] exhibits a triple point separating the
ferromagnetic, antif erromagnetic, and yaramag-
netic phases. The transitions from the disordered
phase to the ordered phases are first order ex-
cept for J= 0. The corresponding phase diagram

FIG. 1. Phase diagrams for Ising models with near-
est-neighbor interaction K, and infinite-range bond-
bond coupling J/¹ Solid lines are first-order transi-
tions terminating at critical points. {a) One-dimen-
sional lattice, (b) square lattice, aud (c) triangular
lattice.

f,"(x+K)
1+Zf, "(x+K)

(12)

The vicinity of the critical point of the pure Is-
ing model. at J= 0 and K = K, is particularly inter-
esting. An expansion of the free energy around
this point becomes nonanalytic, resul. ting in new
critical behavior. In fact, an expansion of f,(K
+x)+ x'/2J in the small. parameter t=K+ x —K,
gives

for the triangular lattice [Fig. 1(c)] has a differ-
ent structure. This resul. ts from frustration in
the triangul. ar antiferromagnetic Ising model,
which stays disordered down to zero temperature.
However, the antiferromagnet undergoes a first-
order transition to a ferromagnetic state for suf-
ficiently large values of the bond-bond interac-
tion term. The gradient of the first-order phase
boundary (PB) is given by

BK/BZI = '[f.'(x, + K)-+f.'(x.+ K)],
where x, and x, are the yositions of the two min-
ima that cross causing the phase transition. The
derivatives of the free energy are given by

Bf/Bk =fc'(x+ K),

f(J,K) =min(-'B+ [f,'(K, )+(K, K)/J]t —ct'gati -+ t'/2J), , (13)

where b and c are constants and o, describes the singularity in f,"(t). The expression to be minimized
is different from those encountered in mean-field theory in that it is explicitly nonanalytic in t. As the
critical point is approached along the first-order phase boundary the response function B'f/BK' di-
verges as (1 —a)/e J, and the critical behavior makes a crossover from Ising to first-order behavior
for BK-J'~ . In the case of the two-dimensional Ising models where o. =0 (logarithmic divergence),
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ing systems, and also in appl. ying nonl. ocal con-
str aunts to Hamlltonlans

I thank Professor A. Nihat Berker for many
useful suggestions, and critical reading of this
paper, and Professor M. Fisher and Professor
H. Falk for helpful comments. This work was
supported by the National. Science Foundation
through Grant No. DMH-81-19295.

0 I i
""

I
~ ~ ~ ~ l......

0 O. l 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
K

FIQ. 2. The response function 8 f/9K as a function
of K for J=O, 0.125, and 0.25.

s'f /8&' diverges as i/J', and the crossover re-
gion is exponentially small, 6K -exp(- c/J). Fig-
ure 2 shows 8'f /BK' for the square lattice as a
function of K for variousV«UME of J. Note that
maximizing Eqs. (9) or (13) for negative J leads
to a continuous transition with renormalized ex-
ponents. However, it is not clear that the maxi-
mized free energy indeed describes any physical
Hamiltonian. "

In summary, I have presented a new result in
statistical mechanics that can be used to general. -
ize certain Hamiltonians, and to obtain the cor-,
responding free energies. Application of this
method to Ising models results in new critical ex-
ponents describing the crossover between transi-
tions dominated by short-range and infinite-range
interactions. This procedure can describe the
crossover from Ising to mean-field critical. ity on
Bravais lattices, "and on the Cayl. ey tree where
the competition between the two types of interac-
tion results in rich new critical behavior resem-
bling a system of variabl. e dimensional. ity. ' This
type of competition can also be studied in Potts
models and percolation problems. " There are
also applications of this method in frustrated Is-
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