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Theory of the Exciton Bound to an Isoelectronic Tray in GaP
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A theoretical calculation for the electronic structure of an exciton bound to a nitrogen
trap in GaP is presented. For the first time, the band-structure effect for both the elec-
tron and hole and their mutual Coulomb interaction are included simultanteously. It is
found that the bare electron is bound by only 0.6 meV instead of 8 meV as usually quoted.
Furthermore, this calculation predicts the A. -B splitting and the oscillator strength of the
bound-exciton luminescence in good agreement with the experimental data.

PACS numbers: 71.35.+ z, 71.55.Fr, 78.55.ns

Luminescence and absorption spectra indicate,
as is well known, that an isoelectronic impurity
in a semiconductor may bind an exciton. ' The
mechanism for such binding is commonly de,-
scribed as follows: An electron is trapped in
the short-range isoelectronic potential of the im-
purity and then a hole is bound in the Coulomb
field resulting from the electron. ' 4 Because of
the degeneracy of the valence-band structure,
the lowest-lying configuration of the bound-exci-
ton system consists of two closely spaced ener-
gy levels associated with different total angular
momenta. The difference between these energies
is experimentally seen as the A-B line splitting.
GaP:N is often studied as an example of the iso-
electronic impurity problem. Because of the com-
plexity of the binding mechanism, accurate first-
principles calculations of the electron and exciton
binding energies are not available. ' Because of
the lack of a detailed calculation of the binding en-
ergy of the whole system, the electron binding en-
ergy is frequently taken to be 8 meV."' '

In this paper we study the binding of excitons
to isoelectronically substituted nitrogen in GaP.
For the first time, the Coulomb interaction be-
tween the electron and hole is correctly included.
By comparing the total binding energy with the
experimental data, we can extract the correct
value for the electron binding energy of an iso-
electronic trap. We show that although the elec-
tron is bound in GaP:N, it is much shallower
than supposed. We further show that it is possi-
ble for an exciton to bind to an impurity which
will not bind either an electron or a hole individ-
ually. Finally, we present the first calculation
of the A-8 splitting in GaP:N and compare it
with experimental data.

The Hamiltonian for a bound exciton is

H, (l) + V(l) +H, (2) + v(1, 2),

where H, (1) and H, (2) are the individual Hamil-

tonians for the electron and hole in the absence
of each other and of the nitrogen impurity, V(1)
is a short-range potential attractive to electrons, '
and v(1, 2) is the Coulomb interaction between
electron and hole.

The two-particle wave function of the system
is assumed separable, i.e., +(r„r,) =g, (r,)
x („(r,), so that each particle's wave function may
be considered individually. A simpler calcula-
tion" (spherical effective-mass approximation)
shows that the correlation correction which re-
sults from not separating the wave function is
only about 6Q.

We describe the electron in a combined basis
as follows: Wannier states localized in real
space near the impurity and effective-mass-ap-
proximation-type (EMA) states localized in k
space near the X minima. This choice of basis
for the electron allows a correct description of
both the short-range behavior and the tail of the
electron and is flexible enough to allow the elec-
tron to assume almost whatever shape minim-
izes the energy. Each Wannier basis state j W, )
is chosen as a symmetrized linear combination
of conduction-band Wannier orbitals associated
with a given (sth) shell (s = 0 being on the im-
purity site). Our basis includes ten such A, -
symmetry Wannier states and fifteen EMA states.
This basis is large enough that including more
states does not appreciably lower the energies.
The possible mixing with the valence bands and
higher conduction bands is neglected. This was
justified in a previous calculation4 and is fairly
obvious given the shallow binding of the electron.

The EMA basis states, p;, , are chosen as linear
combinations of conduction-band Bloch states lo-
calized at the three equivalent X valleys, with en-
velope function in each valley described by an an-
isotropic Gaussian function; e.g. , for the & valley

P, , '(k) = exp[-(k„'+k, ')/4o. , —(k. —k,)'/4n, j,
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where k, is the distance in k space between I"

and X. We use different exponents n, and n, for
the longitudinal and transverse directions to take
into account the anisotropy of the conduction
band at the X points. We further restrict n, -~;
because the longitudinal effective mass is great-
er than the transverse effective mass.

The interactions between the Wannier basis
states I W, ) due to H, (1) are given by

&W. IH.(1) I W. &=Z~E.(k) W. (k) W. (k), (2)

where W, (k) =(c,kIW, ) and E, ( k) is the disper-
sion function for the conduction band. We de-
scribe E,(k) by the tight-binding expression

E (k) —Q V(R )
'l% (3)

where R runs over the lattice vectors and V(R)
are adjustable parameters which only depend on
the distance R. The summation is truncated at
the tenth shell. The parameters V(R) are deter-
mined by fitting (3) to the dispersion curve ob-
tained by an empirical pseudopotential method. "
However, the transverse effective mass at the X
point of the band structure is fitted to the experi-
mental value. " With use of the expression (3),
the matrix elements in (2) can be calculated ana-
lytically. To calculate the matrix elements of
H, (1) between the EMA states, we take

E,(k)=, k„'+k„'+ ', (k, -k, )'
Pl 7

for the z valley where ~7*, the longitudinal ef-
fective mass, is taken to be Sm, *." (This ig-
nores the existence of the camel' s-back struc-
ture, but gives the correct overall curvature of
the conduction band near the X points. )

The interaction between the EMA and Wannier
states is given by

V, —0.01V,.)
We describe the hole envelope wave function

entirely in the EMA basis as a linear combination
of nine s-like and nine d-like Gaussian orbitals.
The d-like orbitals are included here to take in-
to account the warping of the valence band. The
matrix elements of H, (2) between the hole basis
states are calculated following the method of
Baldereschi and Lipari. '~

The Coulomb interaction is

v(1, 2) = 4pe' e'q '» e'
~ (2m)' q' ~(q) r„e(r„)'

the dielectric screening, 1/~(r), is expressed as
a sum of four Gaussian functions least-squares
fitted to the empirical expression given by Bern-
hole and Pantelides. " In evaluating the Coulomb
interaction involving Wannier states, we treat
the electron in a Wannier orbital centered at R
as a point charge there. This is a very good ap-
proximation, considering the localized character
of a Wannier state compared with the charge dis-
tribution in the hole.

We solve the secular equation

(4)

iteratively using the Rayleigh-Ritz variational
method in our basis. Using this technique, we
calculate both the electron and exciton binding en-
ergies as functions of V,. The results along with
the localization of the hole are shown in Fig. 1.
When Vp= 1 145 eV, the calculated system en-

—10—

(P„IH,(1)1W, )= v 35 yE, (k)P„'(k)W, (k) E -20 3
O

which can also be performed analytically. Thus
for the electron, the conduction-band structure
(except for the camel's back) has been included
in the Wannier states exactly and in the EMA
states to the extent that the band is parabolic at
its minimum.

Since the impurity potential is very localized
in real space, we take V(1) = Vol W,)(W, I

+ VJ W,)
x(W, I.' In our calculation we have V, =0 and ad-
just V, to bind the exciton by the observed ener-
gy. Allowing V, to be as large as V, does not
alter the results except for slightly shifting some
of the electronic wave function from

I WQ to
I W,).

(Faulkner' predicts that when included properly,
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I'IG. 1. Ground state energies of an electron bound
to an isoelectronic trap in GaP with and witho ut the
presence of a hole plotted as functions of potential V p.
Also plotted as a function of Vp is the hole wave func-
tion squared at r= 0, I

p„(0)1' (dashed). The vertical
dashed line indicates the position of the observed photo-
luminescence data for GaP:N.
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ergy coincides with the experimental binding en-
ergy of 28.0 meV. This same trap potential binds
an electron by 0.6 meV. This is much shallower
than the frequently quoted 8 meV, but is also
much more reasonable. These calculations also
show that for some values of V, which do not bind
the electron, the exciton is still bound more deep-
ly than the 20 meV of a free exciton. Conceivably
there are physical systems (perhaps GaAs) in
which this situation is realized.

Figure 2 depicts the electron's envelope wave
function in k space [denoted P, $)], with and with-
out the hole along the [100] direction. We see
that in both cases the electron is very localized
near X. The X-valley peaks contain approximate-
ly 80% and 95% of the total electronic charge for
the cases with and without a hole, respectively.
The effect of including the hole in the calculation,
then, is to further localize the electron in real
space and thereby delocalize it in k space. Trans-
forming the wave function into real space shows
that with a hole present, about 16% of the elec-
tronic charge lies within the nearest-neighbor
distance from the impurity site. Without the hole,
about 4/0 lies within the nearest-neighbor dis-
tance.

The values of the electron wave function at I
with and without the hole are 3.5 and 2.2 A' ', re-
spectively. The resulting 1/X ratios can be fitted
with a simple Koster-Slater (KS) calculation us-
ing binding energies of 1 meV for the bare elec-
tron and 8 meV for the actual electron. We see,
then, that our calculation involving only the elec-
tron is consistent with a KS calculation. The fact

1200

OJ

~ 800

400

that the electronic charge density of the electron
when treated correctly with the hole is essential-
ly that of a bare electron bound by 8 meV under
the KS method and with the hole ignored is prob-
ably only a coincidence.

We find that the self-consistent hole envelope
wave function is approximately 80% s like and
20% d like and the wave function squared evaluat-
ed at the origin is

leap„(0)l'=

3.0x 10 ' A '. For
comparison, the corresponding values for the
free exciton and the acceptor are 1.0&& 10 and
60x 10 ' A ', respectively.

The Hamiltonian used in calculating the binding
energy of the exciton [Eq. (1)] does not account
for the presence of two lines in the recombination
radiation of bound excitons. This splitting is ap-
parently caused by an electron-hole exchange
term which depends upon the total angular mo-
mentum J of the exciton. Since the angular mo-
mentum of the hole is 2 and that of the electron
is &, the exciton may have either J=2 or J=1.
Because of the relatively small size of the split-
ting (0.8 meV)" compared to the binding energy
(28 meV), the exchange interaction energy may
be calculated by means of perturbation theory.

Let ~ be the A-B splitting due to the exchange-
interaction energy difference between the J= 1
and J=2 bound exciton states. We find" &E
=~Z,„lq„(0)l', where

&..=Z~l~. (k)l'&(a (el~i(;o4a&
and y„(0) is the hole envelope function evaluated
at r=0. lg,y) denotes the conduction band Bloch
state with wave vector k and

l g„g) the valence
band Bloch state at k =0. Both

l P,g) and
l g„,) are

expanded in 137 plane waves by means of the em-
pirical pseudopotential method. " To simplify the
integration over k we assume that 80/0 of the elec-
tron envelope wave function is localized at X and
20% is uniformly spread in k space. Using the
pseudopotential of Cohen and Bergstresser, we
find that J„=1.8x 10' meV A'. Thus bE = 0.72
meV. This is in very good agreement with the
measured value of 0.8 meV. For comparison, in
a free exciton we find b,E =0.2 meV.

The oscillator strength is easy to calculate
since we already know the electron and hole wave
functions. The oscillator strength is given by"

0
0.80 0.85 0.90 0.95

k tl00] (2'/a)
1.00

FIG. 2. The electron envelope wave function along
the [100l direction in k space of QaP:N with and without
the hole.

where lg„), a =1, . . . , g, denote the degenerate
initial states and lG) is the ground state of the
crystal. We derive f =—&(E~/h&u)lg„(0)l'lp, (0)l'
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for the dipole-allowed A (J= 1) state where E~
=22.2 eV,"P, (0) is the electron envelope wave
function evaluated at k = 0, and y„(0) is the hole
envelope wave function evaluated at r =0. The
factor 4 comes from the summation on the spin-
angle coupling coefficients in (5). We find f
=0.005. This agrees reasonably mell with the ex-
perimental result of 0.01. (The total oscillator
strength for the A line is 0.1; the zero-phonon
contribution was measured to be 10/g of the to-
te.l. ')

To summarize, we have investigated the bind-
ing of an exciton to N in GaP including the band-
structure effect for both the electron and the hole.
Using a realistic Hamiltonian and flexible bases,
we find that when the exciton is bound by 28 meV,
the bare electron binds by 0.6 meV. This value
is substantially smaller than the previously as-
sumed value of 8 meV. By treating the hole with
the electron, we mere able to calculate the A-B
splitting of the bound-exciton recombination radi-
ation. Our calculated energy difference of 0.72
meV compares well with the measured 0.8 meV.
Finally, our calculated oscillator strength agrees
reasonably well with the experimental value. The
ability to correctly calculate both the exchange
interaction energy and the oscillator strength fur-
ther confirms the validity of the method employed
here and therefore substantiates the entire calcu-
lation.
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