
VOLUME 51, NUMBER 6 PHYSICAL REVIEW LETTERS 8 AUOUsT 1983

Viscous Damping of Second Sound near the Lambda Point of Liiiuid 4He
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The theoretical second-sound damping in 4He II is too small in the background region
by 40%. Viscous damping in the normal fluid is identified as the origin of the missing
attenuation. Because of simple two-fluid kinematics, this damping grows below the A.

point as the superfluid density. The strength of the damping is determined by the coef-
ficient of bulk viscosity, which is already known from the measured background first-
sound damping above the g point.

PACS numbers: 67.40.Pm, 67.40.Fd

At the present time there exists a significant
discrepancy between the theoretically predicted'
second-sound damping coefficient D,(t) [where
t = (T —T ~)/T~& 0 is the reduced temperature]
and the measured values of D,(t). The former is
shown in Fig. 1 by the dashed curve (which merg
es with the solid curve for

~
t ~& 10 ''). The ex-

perimental. points in Fig. 1 exhibit the recent data
of Crooks and Robinson, ' which span the interval
10 '& [t[& 2&&10 '. For 10 '& [t( - 10 ' the agree-
ment between theory and experiment is good. The
accord deteriorates, however, for

~
t

~
& 10 '. The

upper end of the experimental interval. corresponds
to the furthest point below the X point, at a tem-
perature difference of T ~ —T = 40 mK. Here it
can be discerned from Fig. 1 that the theory pre-
dicts a D, which is too small by 1.5&10 cm'
sec~, or about 4% below the observed vat. ue.
Evidently the theory has overlooked an effect
which is indeed negligible close to the X point but
which becomes important further below, at tem-
peratures more deeply in the broken-symmetry
state where the order parameter is larger. The
purpose of this note is to put forward a possible
such effect which, if correct, raises the theor-
etical. curve in Fig. 1 from the dashed l.ine to the
solid line, resulting in good agreement over the
entire experimental range.

But before we proceed it is necessary to dis-
cuss the commonly held notion that the second-
sound damping is well understood. This impres-
sion was generated by two different renormal. iza-
tion-group treatments' ' of the problem. Dohm
and Folk' have made a thorough comparison of
these two approaches. From our viewpoint the
alleged agreement is impossible for D,(t), be-
cause the discrepancy exhibited in Fig. 1 occurs

in the noncritical region far from the critical.
point. In this region of relatively large values of
I t I even the most sophisticated scheme of re-
normalization cannot save the theory because the
renormal, ization cannot have any effect whatso-
ever until, the critical point is approached more
closely. At ( t

~

= 2&10 ' the kinetic coefficients
assume their nonunivexsal background values.
Furthermore, as already explained at some
length, ' these background coefficients have fixed
values that are al.ready determined for T & T~, i,n
two different ways. It therefore stands, barring
some arithmetic error on our part, that the dis-
crepancy of 40% at I t I = 2&& 10 ' is a clear and
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FIG. 1. Second-sound attenuation coefficient D2 vs
reduced temperature t =(T —T~)IT~. The data are from
Crooks and Robinson (Bef. 2) (solid circles) and Han-
son and Pellam (Bef. 3) (open circles}. 'The dashed
curve shows the prediction of the theory (Ref, 1) omit-
ting normal-fluid bulk viscosity, while the solid curve
shows the agreement with experiment that results
from its inclusion. This new contribution to D2 is
proportional to p, the superfluid. density, and is there-
fore greatest at. the largest values of tt (, in the non-
critical background region.
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present failure of the theory, and that the cl.aim
of Dohm and Folk" of agreement in this region
applies to the effective ratio R,' and not to D,(t)
itself. '

The lower (dashed) theoretical curve in Fig. 1
is described by

alternate compressions and rarefactions of the
normal-fluid density, as described by the non-
vanishing value of divv„. These density changes
evoke quasiparticle redistributions within the
normal fluid l.eading to a rate of dissipation of
energy density

D,(t)=b.A. (t)/C '(t)+X /C '(t)+By, P =f(divv ) '=0k'(v„') (4)

where B& describes the background order-param-
eter relaxation and C~' (t) is the experimental
constant-pressure specific heat heine the X point.
6X(t) =A. (t) -A~ is the experimental increase in
the thermal conductivity as the X point is ap-
proached from above. It is onl.y in this term that
there is any opportunity for renormalization ef-
fects to enter. We found that the sum of the crit-
ical contributions from the entropy and order-
parameter relaxation rates could be approximate-
ly identified nurrerically with the rise in the en-
tropy relaxation rate that occurs for t& 0. This
identification leads to the simpl. e and convenient
formula of Eq. (1). But here we want to concen-
trate on the last iwo terms of Eq. (1), which de-
pend upon

1 2 1T=2p, v, +~p„v„. (5)

Imposition of the condition of complete backflow
on the mass current density,

J =p v~ +p„v„=0~

gives for the average energy density of the sec-
ond-sound vibration

«.& = 2& T, ) = (p. /p. )p~„'.

where & is the coefficient of bulk viscosity for the
normal fluid. The angular brackets denote space-
time averaging.

The calculation of the damping coefficient fol-
lows elementary and famil. iar l.ines. In standard
notation the kinetic energy density is

Xe =0.153 mW/K,

B& =1.05X10 cm sec ',
(2a)

(2b)

The damping coefficient is therefore

determined from thermal conductivity and ultra-
sonic attenuation measurements above the X point.

Our contention has been that Eqs. (2a) and (2b)
fix the level. of the background second-sound at-
tenuation compl. etel.y. But we have recently come
to real. ize that, because the superfl. uid state has
the broken symmetry characterized by the com-
plex quantum mechanical. order parameter P»
there can be additional contributions to 8&, say
B&', which are proportional to

~ (,~'=p, (t), the
superfluid density. Since p, vanishes above the
X point the postulated additional order-parameter
damping tends to evade us when we use the t & 0
data to fix the background coefficients. Conse-
quently, taking the critical, exponent of p, to be
&, we must admit the possibility of some addi-
tional damping with the temperature dependence

B&'(t)= const&&p, (t)~~ t
~

'~'. (3)

Such a contribution will. also improve the agree-
ment with the light-scattering spectrum. ' We now
proceed to show that the noncritical relaxation
processes within the normal fluid contribute pre-
cisel.y in this way. The normal-ft. uid velocity
field v„shown in Fig. 2 for a standing wave of
second sound of wavelength X = 2m/k results in

It is useful to carry out the same calculation
for the damping of first sound. Fixing our eyes
on the normal fluid we see that the very same
bunching that is shown in Fig. 2 takes place also
in a first-sound standing wave. We therefore
take over Eq. (4) for first sound, without any
modification and with precisely tke same value of

Because now the superfluid and normal. fluid
move together the energy density in the first-
sound vibration is

(U, )=2&T, ) =p&~ ')

FIG. 2. Normal-fluid bunching for a standing wave
of wavelength A. of first or second sound.
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and lacks the factor p„/p, . Thus we find

Eliminating the bulk viscosity from Eels. (8) and

(10), which are contained within the framework
of Khalatnikov's' two-fluid hydrodynamics, we
fLnd

It is a pleasure to acknowl. edge a stimul. ating
discussion with Professor Douglas Scalapino. We
are al.so grateful to Professor Crooks for com-
munication of the experimental findings prior to
publ. ication. This work has been supported by
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Here we have substituted the Clow-Heppy" formu-
la for p, /p.

Equation (11)has the temperature dependence
anticipated in Eq. (3). Treating D,p/p„as ap-
proximately constant, we find its magnitude from
the A. -point val.ue of

D =2c 'a e/(g'
1 1 1 (12)

where c, and & are the velocity and angular fre-
quency of first sound, respectively, and ng Ls

the noncritical, background amplitude attenuation
coefficient in nepers per centimeter at the X

point. Lamberg, Legros, and Salin" have found

n, e = 980 Np cm ' at e/2w =1.1 6Hz. With c, =230
m/sec we find 0 = ~/c, = 3.0X 10' cm ' so that Eps.
(12) and (11)become D, = 5.0x 10 ~ cm' sec ' and

D,(t) =B& ' (t) = 1.2 x 10 'I t I

' ' cm'/sec (1. 3)

We have added this contributionto that shown by
the dashed curve to arrive at the solid curve in
Fig. 1, thereby bringing the theory into satisfac-
tory agreement with experiment in the background
region. " (The open circles exhibit the data of
Hanson and Pel. l.am' in the temperature range not
covered by Crooks and Robinson. ')

In summary, we have identified the "missing"
second-sound attenuation at temperatures wel. l
below the X point and outside the dynamic critical
region as coming from viscous damping in the
normal. fluid. There is no free parameter in our
calculation, which we feel. is al.l the more com-
pel. l.ing because of the very simpl. e physical pic-
ture on which it is based.
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