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The model of Fukuyama and Lee for the pinning of the charge-density-wave phase by
impurities is investigated. The current-current correlation function, related to the
force-force correlation function by the equation of motion, is calculated to fourth order
in the impurity concentration n o. It is found that the threshold electric field is proportion
al to n o, and above threshold, the resulting current is periodic in time, exhibiting many
harmonics.

PACS numbers: 72.15.¹j,72.15.Eb, 72.70.+m

Recent experiments on the conductivity of
NbSe, and rel.ated compounds in the presence of
an appl. ied electric fiel.d have given strong sup-
port to the notion that the material. exhibits a
charge-density wave (CDW) pinned by impuri-
ties. ' ' lt has been found that there is a threshol. d
el.ectric fiel.d E, below which the CDW current
vanishes. By varying of the impurity concentra-
tion n„E, has been found to vary approximately
as n, ' for low concentration. Above threshol. d,
the current is observed to have a periodic time
dependence, with many harnomics of the funda-
mental. frequency f (i.e., narrow-band noise); f
is found to be proportional. to the time-averaged
current. ' '

Gruner, Zawadowski, and Chaikin' found that
these and many other experimental facts con-
cerning such systems can be qualitatively under-
stood in terms of an overdamped oscillator with

a periodic potential. The coll.ective coordinate
x(t ), which describes the center-of-mass posi-
tion of the CDW, satisfies an equation of motion

x /T + (~,'/Q ) sin(Q x) = eE/rn,

where m&u, '/Q represents the strength of the pin-
ning force.

Our goal. is to investigate to what extent Eq. (1)
can be derived from microscopic theory. We
consider the Fukuyama-Lee model. of a CD% in
which the charge density is represented by

p(r, t)=p, +6pcos[g. r+ y(r, t)],
where the wave vector Q is parallel to the x axis
and incommensurate with the crystal lattice. '
The ampl. itude 6p is taken to be a constant in r
and t. The CDW is assumed to interact weakly
with a random distribution of impurity or pinning
sites, and is acted upon by a uniform electric
field E(t). The Hamiltonian is taken to be

H = C Jd're
~ Vy(r, t)~'/2+e*E(t) p(r, t)+V 5n('P) cos [Q ~ r+p(r, t)]),

where the coordinates x, y, and z have been
scaled so that the coefficients of the x, y, and z
derivative terms are equal. ; time is chosen such
that the velocity C, of small-amplitude phase
fluctuations is unity. The quantity 5n(r) is the
fluctuation of the local density of pinning sites
defined so that its spatial average vanishes,
J5n(r)d'r=o.

In these units, V, has the dimension of length.
Within linear response theory, the deviation of

the phase 5p(r ) produced by a defect centered at
a point where sing r=1 is

5(p(r) = V,/4mr (4)

For weak pinning, we require &p(r)«1. There-
fore, V, is taken to be small compared to 4m

times the "size'* a of the impurity so that Eq. (4)
holds only for r&a with 5y(r) saturating for r& a.

We assume relaxational. dynamics for p so that
the equation of motion becomes

p(r, t)/~ =2'p(r, t)+ VORA'(r) sin[/ ~ r +cp(r, t)]+e*E(t ),
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and the phase fluctuation 6p as

5p (r, t ) = y (r, t ) —S( t). (6b)

We then define a coherence length $ to be the
size of the region over which the mean square
fluctuation of 5y(r) is (2m)'y:

«9 ');,.=- J 'd' ~ V ( )'/f 'd' = (2 )'y,
where ( ~ ~ ~ ),. denotes an impurity average and
( ~ ~ ~ ) denotes a spatial average, and where y
is of order unity. For the static case, one has

—v'5y (r) = V, 5n(r) sin[/ ~ r+ b+ 5(p(r)].

Expanding 5y in powers of V„one has to order
Vp~

where the damping rate 1/w is due to the CDW
coupling to phonons, normal electrons, etc. , but
not to impurities. We define a collective variable
A(t ) as the spatially averaged phase:

a(t) = fd'r y(r, t )/fd'r, (6a)
FIG. l. Bubble diagram representing (by~);, . The

solid lines are Green's functions.

!r —r'I =—$ so that trigonometric functions are ex-
panded only for arguments & 27t. Secondly, one
expects that regions having (5q'), , which differ
by an amount » (2m)' act as separate domains
which are coupl. ed by residual. interactions, such
as contact and long-range Coul.omb forces."
While experimental resul. ts in different labora-
tories may l.ead to different interpretations re-
garding the coupl. ing of domains, general. ly the
narrow-band noise is consistent with the corre-
sponding dynamics of a single domain. '

The observed noise spectrum of the CD% is
proportional to the current-current correlation
function

—V'5y, (r) = V,5n(r) sin(Q ~ r+b. ) (9a) c (t, t')=t „(t)t (t') (12)

ol

5e,(r)
= J dr'G(r, r')V, &n(r') sin(Q ~ r'+ &), (9b)

where G(r, r') =
I r - r'I ' is the effective Coulomb

potential. . More generally, from Eq. (8) we see
that ~q behaves as an electrostatic potential. , with
the fluctuating quantity V,5n(r) sin[/ ~ r+6+5y(r)]
acting as a charge density. An analogous cal.cul.a-
tion has been carried out by Efetov and Larkin, "
and one finds to al. l. orders in V„

(tlap'), , = n, V,'J d'r'/2(r — ')'

= 2mnoV02) = (2&)ay (10)
ol

for a fixed impurity distribution o.. While this
measured quantity depends upon the initial con-
dition a (t'), we are free to choose the same
value of b, (t') =h(t') for all n. If one integrates
Eq. (5) over a volume of size $, one finds

~„(t)/7 =a+z(t)+F (t), (13)

where

F„(t)=(V, 5n (r) sin[/ ~ r+b, +5y„(r)]),. (14)

Since F (t) fluctuates randomly over the ensem-
bl.e of impurity distributions, it fol.lows that
(F(t)),. = 0. Therefore, the impurity-averaged
correlation function satisf ies

C(t, t')/"= «(t) t (t ')), /-"

$ = 2my/noVo2. =(e*E)'+(F(t)F(t'));, (15)

Equation (10) is represented by the diagram in
Fig. 1. Equation (ll) is consistent with the do-
main size found by Lee and Rice." Since Vp for
weak pinning is small compared to the interatomic
spacing, $ is large compared to the mean spacing
between impurity sites. For n, =(10 '-10 ')/a',
pinning strength &Vp=—0.01 eV, and EF =—1 eV, we
have $=—1 —100 p, m. This value of V, used will.
be inferred bel.ow.

The length $ is important for two reasons.
Firstly, since we are expanding in terms of the
dimensional parameter n, V,'= 2my/(, spatial in-
tegrals in diagrams must be cut off at distances

where the V'6p terms l.ead to negligible boundary
terms. While (F(t));=0, (F(t)F(t')), +0, and
gives the desired pinning effects as well as in-
ternal damping effects. Since 6 gives the drift
velocity of the CDW, we see that Eq. (15) ex-
presses the current-current correlation function
in terms of the external. force and the pinning
force-force correlation function.

Consider the adiabatic approximation in which
b, (t) and 5q(r, t) vary sufficiently slowly in time
that the zero-order Green's function can be ap-
proximated by its static limit 1r —r'1 ' in cal-
culating diagrams. This requires cu/v «(2m Co/
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()'. For T =10 '" sec and Fermi velocity eF =10' cm/sec, this approximation is valid for CDW drift
velocities v~ = ~/Q & 10' cm/sec, which is well obeyed near threshold, ' but not at high velocities as
considered by Sneddon, Cross, and Fisher. " The pinning force for a given 6 is given by Eq. (13)
where ()p(r) is given by Eqs. (5) and (6b). To order (n, V,')', one finds

C {t, t')/7'= {e*E)'+(n, V,'/2V) cos8+ (n, V,'/2)' V '(cos28 —cos0) b+. ..,
where V=4m)'/3, &=A(t) —b, (t'), and b =4m) is
the bubbl. e shown in Fig. 1. Terms of order
(n, VO2)"/V where n = 3, 4 have coefficients pro-
portional to the diagrams shown in Fig, 2, which
are proportional to $" '. We note that for a finite
domain of size $ given by Eq. (11), all, of the
terms in the expansion of {E(t)F(t')), through
fourth order in n, V,

' are proportional to (n, VO2)'.

Presumably, a calculation to infinite order in V,
would yield an infinite number of terms of the
same overall order in npVp'. Details of the above
calculation will be presented elsewhere.

From Eqs. (15) and (16), the threshold field is
given by

e*Ep = «p' ~p'~ (17)

where K is a positive, real constant of order
unity, obtained by minimizing Eq. (17) with re-
spect to 0. Equation (17) was obtained by Lee and
Rice,"employing a diff erent procedure. Using
the parameters given above and e*=m'e/25v F,
eE, = 10 ' eV/cm for n, = 10 '/a', a—nd taking
K=1, we infer V, =—a, consistent with our weak-
pinning assumption.

where the A„are positive constants of order
(n, V,')'. For E&E„A is a constant. For E&E»
we may approximate b, (t') by its impurity-aver-
aged root mean square value obtained by setting
t=t'

{j (ti)2) /~2 eg2(E2~E 2)

where we have defined the "maximum" fiel.d Ey
to be

(e*E,)'=- g„a„. (20)

We now have a first-order equation of motion
for A(t), with the initial condition given by Eq.
(19). If we naively keep only the first term in
the Fourier expansion in terms of 4(t) on the
right-hand side of Eq. (18), we may solve for
i(t):

! We can find the time dependence of ~ by inte-
grating Eq. (16), treating t' as a constant. Re-
writing Eq. (16), we have through fourth order
in npVp'

{b{t)3 (t')); /&'= (8 "E)'+g„A„cos(nt)), (18)

j(~)=~(t) =f!.(E/E. )'-1]"&(E/E,)'+ cos[f(t - t )]& ', (21)

where the fundamental "noise" frequency f is
given by

f ="*HE'-E.')/(E'+E ')]'". (22)
(a)

The static COW current jd, (E) is the time aver-
age of j(t), which in this naive approximation is
found to be equal to f as given by Eq. (22). The
amplitude of the nth harmonic is found by multi-
plying Eq. (21) by cos(nf(t-t')j, and integrating
over a ful. l period of the harmonic time depen-
dence.

We note that in general there are two electric
field parameters in this formula. lt is easy to
show for the fourth-order calculation that we
have performed that E,oEp for small y. As the
number of Fourier components of the right-hand
side of Eq. (18) increases, the ratio E,/E, also
increases. We note that for E,/E, near unity,
the behavior of jd, (E) just above threshold is as
(E-E,)'~', contrary to experiment. However,
as E,/E, becomes large, the region of square-

(a)

(h) ())

FIG. 2. Diagrams of third and fourth order in nppp'

that contribute to the force-force correIation function.
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root behavior near threshold becomes smal. l. It
therefore seems likely that a numerical calcul. a-
tion based upon Eg. (18) will give results that are
in general agreement with experiment, if we
treat y as an arbitrary parameter.

Finally, there remains the more fundamental.
question of treating interdomain couplings, which
in this calcul. ation we have neglected. It is likely
that dynamical (nonadiabatic) effects are essen-
tial in treating the domain-domain coupl. ing. Pre-
sumably, such a treatment woul. d l.ead to a corre-
lated motion of the CD% in different domains,
without destroying the narrow-band noise.
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