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Relieving Cholesteric Frustration: The Blue Phase in a Curved Space
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The problem of minimizing the full cholesteric free energy in flat space is difficult
since the bending and bulk energies favor different forms of the order parameter. It is
shown, however, that the problem can be solved exactly on the surface of a sphere in
four-space, where the curvature relieves the strains induced by the "double twist. » 'The

conventional Landau bulk free energy leads to a rigorously uniaxia1 structure. The model
is also of interest as a simple and explicit example of the ideas underlying recent theo-
ries of glasses.

PACS numbers: 64.70.Ew, 61.30.Jf

Equilibrium theories of cholesteric liquid crys-
tals' ' are based on the minimizatio~ of a simple
mean-field free energy, yet they display a be-
wildering variety of blue phases, " as do the
materials themselves. ' This complexity is the
manifestation of an incompatibility in the free
energy: Structures that favor bulk terms in the
free energy do not take full advantage of the pos-
sibilities for minimizing the gradient energy,
and vice versa. We have found that this difficulty
disappears on the surface of a sphere in four di-
mensions with circumference given by the cho-
lesteric pitch P: There is a unique unfrustrated
texture which minimizes the free energy, pro-
viding an exact solution to a problem which has
proved extremely difficult to treat in flat space.
A recent proposal for a model of the blue phase

as a '
doubly twisted" structure threaded by a

network of disc1ination lines is seen from this
perspective to be nothing but the result of flatten-
ing out our exact curved-space solution. The cho-
lesteric thus emerges as an extremely simple,
explicit, and, in the curved space, analytically
manageable continuum model of the general kinds
of ideas that people have been formulating to ac-
count for the structure of glasses. "

The order parameter in nematic or cholesteric
liquid crystals is a real traceless symmetric
tensor Q;, that characterizes the deviation from
isotropy of some appropriate local tensor prop-
erty of the system' such as the dielectric con-
stant. To second order in spatial gradients and
to leading nonvanishing order in Q there are just
three independent terms in the bending free-ener-
gy density:

f b,~k =~ Trg'-PTrQ'+ y(TrQ')' (2)

where sums on indicies are implied. The K,
term is allowed only in cholesterics, which are
distinguished from nematics by the absence of
microscopic inversion symmetry. The simplest
model for the bulk fr'ee-energy density requires
terms through fourth order in Q. Since the only
independent invariants of a traceless three-tensor
are TrQ' and TrQ', this has the general form

lem is that f b, ~q, which determines the amplitude
and shape of the local order parameter, favors a
uniaxial form' for Q,

(3)

since Tr Q' is extremized by a uniaxial form for
given TrQ . However, minimization of the bend-

ing energy (l) for given f d'x TrQ' leads to the
linear condition

The solution to the simple mean-field problem
of minimizing f&,~+ f b, ~k is unknown. The prob-

~

Q;,
' = (x;x, -y, y, ) cos2q, z + (x,y, + y, x, ) sin2q, z,

where

qo = K3/4K, =2&/p,

VXQ = —2qoQ

which is satisfied by the biaxial form

(4)

with P the cholesteric pitch. Thus f«, d is uniquely minimized by a biaxial texture formed from linear

combinations of Q' and its rotations, which fails to take full advantage of the cubic terms in fb„,„.
This incompatibility of fg„d can impose on Q some rather intricate compromise structures near the
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n = ~ cosqpx -y" sinqpx,

n = z cosqpr —psinqp~

which (8) evidently satisfies at r =0.
Note that perfect double twist cannot be achieved

Q„., = e ' e '(e " ~ V)Q = e 'e'"'V, Q = V,Q;,. + Q„(e "V„e")+ Q, , (e"V,e").
Equation (11) includes the contribution from any spatial variations of the basis vectors. The general-
ization of the gradient energy (10) to the curved space S'(q, ) is simply

transition temperature. These are the blue phas- throughout an extended region, since (9) implies
es. (Well below the transition from the disor- V,V,. n & V,V, n. Meiboom et a/. ' propose a struc-
dered "isotropic" phase, theory and experiment' ture in which (Vi n; +q,e;, »n»)' is made small
agree that the equilibrium structure is essential- throughout a network of cylindrical tubes. They
ly a uniaxial phase with show that this attempt to spread double twist

through the system necessarily introduces defects
threading the intercylinder regions and propose

with a slight biaxiality induced by the anisotropy that near the transition to the disordered "iso-
in the twisting of n.) tropic" phase, the energy gain of the local order-

In discussing the blue phase, Meiboom et al. ing outweighs the cost of the defects and stabilizes
consider a uniaxial order parameter, as favored the structure.
by the bulk terms, and attempt to build structures The impossibility of extending the double-twist

reducing f g,~ as much as possible. They find ordering throughout the system can be viewed as
that locally the ' double-twist" structure a form of frustration. Nelson" has remarked

that this frustration is completely relieved on the.
8 surface S (q,) of a sphere of radius 1/q, in four3

lowers the gradient energy near the line ~ =0 mell dimensions, so that double twist can exist at

below that of the low-temperature spiral struc- every point. We show here that this doubly twist-
ture (7). The term double twist" refers to the ed uniaxial form uniquely provides the exact
fact that in the vicinity of r =0 the director n minimum of the full free energy.
twists away from & in all radial directions, in Consider first a nematic liquid crystal (K,=O).

contrast to the spiral form (7), which twists only The gradient energy is minimized" by any con-

in the x direction. The coordinate-independent stant Q;, . The bulk terms (2) then require Q to

condition for double twist is given by the differ- be uniaxial. " This solves the problem.
ential relation A similar argument can be made for the cho-

lesteric on S'(q,). Notice first that the term in

(1) linear in gradients, which is responsible for
the complexities of the cholesteric, can be com-
bined with the other gradient terms, if we rede-
fine fg,~ to be given by

f g
&= 2Ki(V»Q'~ —qo~ » Q.~ —qo~&». Q ~ ) + zK2(V»Q», ) ~ (»)

[This differs from the form (1) by a term proportional to TrQ', which can be subtracted by a corre-
sponding redefinition of f h„k.]

We now introduce a set of orthonormal basis vectors in four-space. Let (x„x„x„x,) be a point on

S'(q,), and let e~" =q,(x„x„x„x,) be the unit radius vector and e~'~, e '~, e~'~ be a local orthonormal
basis for the tangent three-space. Take Q;, to be the components of Q in this basis (i,j =1,2, 3): Q

=Q;, e 'e~'~. The derivative of Q on the sphere is given by projecting the usual four-dimensional grad-
ient into the tangent three-space":

1 2 j.f grad
= a K] (Qii; » qp+i s»Qsj qo~jsQ»is) + z K2(Q»j;») (12)

Consider now the basis"
-(i)e =qo(-x] fxo/x3 $ x2)

"(2) (e ' = q, (-x„-x„xo,x,),
"(3)e -q, ~-x„x„—x„x,) .

One easily verifies that

~( j) ~( g)e V'e =&p (14)

Equation (12) then simplifies to

f„&=-'. K, (V, Q;, )'+-'.K.(V,Q„)'.
As in the case of a flat-space nematic, any con-
stant Q;, in the basis (13) minimizes the gradient
energy (for K»K2&0)." The bulk energy (2) re-
quires Q to be uniaxial, and Q therefore has the
form (3), where the components of n are constant

468



VoLUME 51, NUMBER 6 PHYSICAL REVIEW LETTERS 8 AU& Us+ 1983

in the basis (13)."
Of course, our structure on S'(q,) does not re-

solve the computational problem of optimizing
blue-phase structures in real space. It does,
however, vividly bring home several important
points. First, the importance of double twist is
clear. The components rc, of the major axis of Q
(which are constant in the basis (e 'j) satisfy the
double-twist condition at all points [c.f. (9)]:

Second, the relationship of the uniaxial and biaxial
models is clarified. When the cubic term P in (2)
is not equal to zero, the unfrustrated texture is
rigorously uniaxial, "and biaxiality will occur
only to relax imposed strains. This lends support
to the assertion" that biaxiality in the order pa-
rameter is not an essential feature of the blue
phase except in the cores of disclination lines. "
Third, in contrast to analogous theories of glass-
es, the radius of curvature of the natural" space
S'(p, ) for the cholesteric is very large compared
with atomic dimensions, and there is therefore no

ambiguity about whether or not a given flattened
configuration should or should not be viewed as
containing defects. Fourth, the essence of the
complexity of the blue phases lies in frustration:
In a space curved so as to relieve this frustration
the minimization problem has a simple, exact
solution.

One of us (J.P.S) has had helpful discussions
with P . W. Anderson; another (N.D.M. ) was stim-
ulated by D. R. Nelson (private colloquium).
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A uniaxial tensor has a pair of degenerate eigenval-

ues and therefore an axis of symmetry n (rodlike sym-
metry). This is the basis for the conventional descrip-
tion of cholesterics in terms of a director. A biaxial
tensor has unequal eigenvalues (bricklike symmetry).

~Z. Yaniv, N. A. P. Vaz, G. Chidichimo, and J. W.
Doane, Phys. Rev. Lett. 47, 46 (1981).
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' When K&,K2& 0 this is evident. In Qat space it re-
mains true throughout the region of stability of f', ~d

(Z, &0, Z, &--,'.Z,).
' Since f', ~d is minimized by any constant tensor, the

form of Q is determined by minimizing f&„&&. Should

f» &I,
have the more general form E('Trg, Trg~) with

E'minimum at a nonextremal value of Trg~ [ (Tr@3 (

& (Trg~)3~2/E6] then the bulk free energy would favor a
biaxial structure. Biaxial nematics are rare I. L. J.
Yu and A. Saupe, Phys. Bev. Lett. 45, 1000 (1980);
B. Bartolino, T. Chiaranza, M. Meuti, and B. Com-
pagnoni, Phys. Rev. A 26, 1116 (1982)], but even should

f~„&&have this unusual form, the cholesteric structure
would still admit a locally biaxial solution on the three-
sphere analogous to the locally uniaxial solution required
when/&„&&has the form (2).

' For any four-tensor A, by e~')z &»P we mean e ~'&

xe~&~&g». (Greek indices are summed from 0 to 3,
and Latin from 1 to 3.) See also C. W. Misner, K. S.
Thorne, and J. A. Wheeler, Gravitation (Freemao,
San Francisco, 1973), p. 259.

To understand the symmetries of the (p('~ ) and to
simplify computations, it is useful to note that e&'~ can
be compactly defined in terms ef hvo-dimensional uni-
tary unimodular matrices by z„~&)z~~) = z ~)qp(z~z~ )),
where 7.~ ) = 1, z('~ =io &'), and the 0-(') are the Pauli
matrices.

We suspect that this remains true throughout the
region of stability of f', ~d (cf. Bef. 12) but have not
constructed a proof.

'VNote that we can define a "cholesteric covariant
derivative" B, (see Bef. 6) by adding a torsion T'»
=Q'pQ& ~ ~ to the ordinary connection coefficients I'& &

=e~')V'~e~'). The double-twist equations (9) and (16) and
the gradient free energy (10) are naturally expressed
in terms of D, In flat space, parallel transport
around closed loops under D' does not close, reflect-
ing the negative curvature &8~8 ———6qp induced by
the torsion. The basis (s('& ) satisfies (D~);e(~~ =0 on

S3(qp), so that the net curvature vanishes and parallel
transport is unfrustrated. This makes our texture pos-
sible.
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One might note that SO(4) modulo the symmetry group
of the uniaxial texture is topologically equivalent to
BP, the space of directors.

'9S. Meiboom, M. Sammon, and W. F. Brinkman,
Phys. Rev. A 27, 438 (1983).

As the cubic term goes to zero the bulk free energy

becomes a function only of Tr@2 and the uniaxial mini-
mum becomes a member of a four-parameter family
of biaxial minima. Thus for small p (nearly second-
order phase transitions) small strains will lead to
large biaxiality. Indeed, for zero p the ground state
in flat space is a maximally biaxial spiral phase (5).
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