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It is proposed that the intrinsic states in a well deformed nucleus may be described as
those of a system of nonspherical bosons, each possessing quasispin 1, p, or quasispin
0, s. The model is tested by the experimental data with analytic expressions which have
been derived for the bandheads and the F.2 transitions.
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we hope to reach the other higher excited states
typical of the observed intrinsic spectra of large
deformed nuclei. The imposed energy degener-
acy of P and y vibrations is removed by the inter-
actions among these sP bosons, which then in-
clude 6-spin-nonconserving terms. In so doing,
we expect to explain naturally the anharmonicity
of many-phonon states, such as that of the two-
y-phonon states in '"Er.

To introduce 6 spin and thus the cylindrical bo-
sons, let us begin with the SU(3) limit of the sd-
boson model. Instead of'using the group chain,
SU(3) DR(3), as used for spherical sd bosons, we
will use the scheme SU(3) gSU(2) U(1), which
has been studied extensively in the context of
fermions by Elliot in his SU(3) model. ' It is
known that the SU(2) of this latter group chain
can be generated by the following operators,
which define our 4 spin:

A recent analysis' of the collective states of
'"Er with'the interacting boson model' has led to
many interesting discussions and investigations
into the nature of the intrinsic states in well de-
formed nuclei. ' We propose a possible descrip-
tion of these states in terms of a cylindrical rep-
resentation of the boson SU(6) group, in which a
large deformed nucleus, in its intrinsic frame,
may be considered as a system of nonspherical
bosons, each possessing tiuasispin 1, p; or tluasi-
spin 0, s. These quasispins, which we refer to
as 6 spin, are the SU(2) symmetry labels of an
intrinsic system expressed mathematically by the
group chain SU(3) 3SU(2) U(1). Since SU(2) is
the symmetry group of the two-dimensional oscil-
lator, we force a cylindrical symmetry by im-
posing a 6-spin invariance to the boson system,
which generates an energy spectrum equal to the
two-dimensional harmonic oscillator. The de-
generate boson states with the same value of A
can be specified by the component K of the angu-
lar momentum along the symmetry axis. In the
present picture, such a cylindrical symmetry is
temporarily imposed on the modes of P and y vi-
brations by incorporating them into a P boson
who
tati
son

i), +, =~W3((d ~s+ std ) - '7' '(d'tx d) j
a, = —&4V3 ((d, ts+ std, ) —&7'l'(d~x d), '), (1)

& = —' 10' '(d ~x d) '

se presence represents a single boson exci- %e then have cylindrical bosons such as s bosons,
on from a ground state consisting of N s bo- P bosons, and spinor bosons, which we call A bo-
s. With excitations of more than one boson, sons, as created by the following spherical ten-

sors in the ~-spin space, respectively:
s~=(1/v3)(s~+ vt2do~), 6=0; P, ~=d, ~, Po~=(1/v3)(- v2s~+do~), P, t=d2t,

1/2 "1 s + -1/2 1 t + Y
1

(2)

Following Elliot, we choose the intrinsic wave function for a given SV(3) symmetry (A, t).) to be that
with the maximum value of the intrinsic tluadrupole moment Q, and we see that, in general, more than
one boson configuration shares the same t))o. In a study of this configuration mixing in an intrinsic
state, we have proved, using standard group-theoretical techniques, that the configuration

(s 't) &&+ p+f s )l2(p 1') (p+2f s )/2 i0) (3)
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is always dominant over the other components in
the states (A. + p, +f„p,+f„f,). Taking the phys-
ically most interesting state, (A. , p) = (2N-4, 2),
as an example, we see that the coefficient for the
configuration that has two spinor bosons is —[1/
(2N-1)]'~', indeed small compared to that of
(st)" 'P~~O), which is [2(N-1)/(2N-1)]' '. For
the next higher band, (A. , p) =(2N-8, 4), the ratio
of the intensities of the configurations, with and
without spinor bosons, is of the order 1/N. This
behavior persists generally, even with higher
SU(3) representations, and thus is closer to the
Bohr and Mottelson geometrical picture, where,
in the discussion of P and y vibrations, the I = 2,
&=1 mode of excitation is absent in large de-
formed nuclei.

In every intr-insic state, keeping only one con-
figuration as given by (3) leads to the scheme
SU(6) 3 SU(4).

If we take the intrinsic energies to be propor-
tional to the eigenvalues of the Casimir operator
of SU(3), namely,

—z C(A. , p) = —z(A. '+ p'+ A, y. + 3A. + 3 p.),

the resulting spectrum can be grouped into bands
(not to be confused with the usual rotational
bands) labeled by the number of P bosons, N~,
which is common to all the following representa-
tions in the band:

(A. , p, ) = (2N- 4N& + 2 v —2, 2N~ —4 v+ 4);
(4)

—1 2 3
~N+1-, even%
1 N +1 odd

All of them have the same intrinsic quadrupole
moment Q, = 4N- 6N~, and therefore the same
dominant spinor-boson-free configuration (s )
x (p t)~u ~0). All of these representations have
three rows in their corresponding Young's dia-
gram except the energetically lowest member of
the band, which has two rows. The latter repre-
sentation has the symmetry (X, p) = (2N- 4N~,
2N~), and serves as the bandhead. Such a group-
ing of bands becomes reasonable since the ener-
gy spacing between bandheads goes as N while
that between band members goes as unity. Since
the given symmetry (A. , p) has A =& p, , each mem-
ber within a band can now be assigned a K spin
according to (4), namely, a=N~, N~ —2, . .. , 1,
or 0. For a given number N, the SU(3) energies
relative to the ground state can be written down

in terms of the d spins; for the N~ band

6&= 3 g (2N~ (2N- 2N~ + 1)+ (N~ —A) (N~ + 4 + I)).
(5)

TABLE I. Bandhead energies of '6 Er (in megaelec-
tronvolts) .

Etheor
+exp t

(Ref. 6)

1
1
2
2

2+0
2+0

0.88
1.24
1.94
1.89
1.36
2.35

0.82
1.22
2.06
1.85
1.42

'A A-spin mixing calculation.

In the limit of large N, we see that all the mem-
bers of a band N~ become degenerate in energy
and the energy spacings between any two neighbor-
ing bandheads become equal. The level scheme
of this type spells out immediately the underlying
sj5-boson picture in its SU(4) 3 SU(3) U(1) limit.
The energy expression (5) is then exactly that of
sP bosons according to the group chain SU(4)
ZSU(3) 3 R(3), and has the closed form, orginal-
ly given by Racah, '

AE=&~e+~aN~(N~ —1)+b[&A(A+I) —N~], (6)

which immediately fixes an interacting p-boson
Hamiltonian, provided that e=6a(2N-1), a
= —18m, and b= —6K.

In the cylindrical sj5-boson model, the model
Hamiltonian is, in general, no longer rotational
invariant in 4-spin space as with good I. in the
case of spherical sd bosons. In order to preserve
the axial symmetry and time-reversal invariance,
the most general form of the Hamiltonian is the
mixture of the zero-z-component a-spin tensors
of rank zero, two, and four, namely, H=B,'
+H, '+ H,'. In terms of the SU(3) generators Q„
[=- 6'~'(p exp) „']and the R(4) Runge-Lenz vector
A „(=P„~s+s ~P „), the 6-spin-nonconserving part
of the Hamiltonian is chosen to contain the terms
(Qx Q),', (Q&& Q),', and (A x A),'. This choice is
adequate, since the source of these terms may be
traced back to the pairing, octupole-octupole, and
hexadecupole-hexadecupole interaction terms in
the sd-boson Hamiltonian. Actually, we have per-
formed a complete mapping of the most general
sd-boson Hamiltonian onto an axial-symmetric
one in the sSs space and thus obtained a linkage
between both Hamiltonians, enabling us to make
the source tracing mentioned above. The details
of this mapping will be reported elsewhere. %e
focus our attention on cases not far from SU(3)
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symmetry, where our model Hamiltonian is chosen to contain the scalar term, A~, which is the sum
of a term yL' and a Hamiltonian whose parameters are adjusted to reproduce the SU(3) energies (5),
and the L-spin-nonconserving term given by n(Q && Q),'+ P(Q&& g),». A simple first-order perturbation
treatment leads to the following energy expression relative to the ground state:

Z=3~t2N, (2N-2N, +1)+(N, -~)(W, +a+1)]+y~(a+1)

+ „, —,(N, —a)(u, +a+3)+, (N, +a+1)(N, —~+2)3u 3R'-4E(6+1) 4+2 a-1
14'" 2m+1 2a+ 3 ' 2s —1'

(2b, —3)(2b, + 5)(2A+ 1)
12(2m+ 3)'(2a —1)'

6P g, „y, 6 4 b, D(a —1)(6+1)(d, + 2)(26+ 3)(2g —3)(2@—1)
70"' Z/2 0 -~/2 (2a+1)(2a+ 5)

1 26+ 5

( + 3)2 (NP +)(+P + + + 3) + (2/ 1)2(2g 3) (NP + lL+ 1)(lVP K+ 2)

(2a+ 1)(2a+ 5)
(2E+ 3)'(2E —1)'

This last expression has been used to reproduce
various bandheads in '"Er with 3~ =0 11, n
= —0.065, P = —0.2, and y =O. l. The results,
shown in Table I, are quite encouraging. The
reproduction of the two-y-phonon &= 4 band
seems to be very instructive in relation to its an-
harmonicity. In Table I, the reported 1.36-MeV
state, compared to the empirical 1,42-MeV one,
was obtained by a ~-spin mixing calculation, with-
in the N~ = 2 band, with the mixture given by ip, )
=-0.76iXp ——2, 6=2, K=O)+0.65iN~ =2, 6=0, ~=0).
This mixing will be used afterwards to analyze
the E2 transition data and leads to interesting re-
sults.

To test the model with E2 transitions, we have
constructed closed expressions for intrinsic ma-
trix elements in terms of A spin. To assimilate
the situation in the vicinity of SU(3) symmetry,
we use the most general E2 operator,

the neighboring interband transitions between dif-
ferent N~ bands, and (ii) a constant value of the
ratio (N~ A K+ vi T IN~ —1, A + 1, K + v)/(N~ A fC

+2iTjN~ —1, b, +1, K), where v=p, 2, independent
of N~, N, and. g. In the special case of N~ =1,
these features are exactly those obtained recent-

(2o)o

' '1.93
„(1.57)

T„=(d ~s+ s td ) + 7'i' g (d ~ x d) „',
with a value not necessarily its SU(3) one, —z.
After decomposing it into A-spin tensors of var-
ious ranks and defining

.17
.3O)

1.93 (1.57)
(11)0

((N, a)„)=[2(1 5„,)] 'i'(iN, Za) iN Z —~)),
we reach expressions which reveal the general
trends of the transitions among the first few ex-
cited N~ bands, near SU(3) symmetry, for a ser-
ies of nuclei in the rare-earth region, where the
values of g are in the range —0.085 & g ) -0.203,
as determined by Warner and Casten. ' The re-
sults, presented in Fig. 1, are as follows: (i) a
dominance of the intraband transitions between
the members of the same iV~ band over some of

.76

.37)
.63
.23)

&oo)p

FIG. 1. Interband and intraband E2 transitions
among the intrinsic N& bands for N= 16. The transi-
tion rates are calculated for both end values of q in
the range —0.085)q) -0.203 for the rare-earth nuclei.
The numbers in the parentheses besides the arrows are
the rates for g = —0.085 and otherwise are for g =
—0.203.
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ly by Bijker and Dieperink from which they dem-
onstrate (i) the dominance of p - y over p -g and
(ii) (p )T~g)'/(y )T)g)'=&. This last ratio can be
obtained easily in the present work from the sim-
ple expression a/3(~+ 1).

To compare the available E2 transition data' of
'"Er with our model we have calculated the quan-
tities B(Z2, I,K, —I~K&) in the adiabatic limit,
using the derived intrinsic matrix elements with
Casten's value of g, —0.115. The results of
B(E2) branching ratios from the y and the p band
are very close to those of Casten and Warner, '
showing the goodness of the adiabatic approxima-
tion. After extracting the empirical values for
the intrinsic B(R2) branching ratios in the adia-
batic limit, we compare the calculated ones,
2.57:100 and 2.6:400 for (ll), -(00),/(ll), -(ll),
and (11),- (11),/(11),- (11)„with the experi-
mental values 2.60:100 and 3.0:400. The domin-
ance of (ll), -(11),over (ll), -(00), is demon-
strated by its ratio 8.66:5.5 compared with its
empirical estimate, 28.0:5.5. In calculating the
B(E2) branching ratios from the 0, band, we re-
call the fact that the intrinsic 0, state, repro-
duced in the present calculation, is a A-spin-
impure one, given by ~0,) = —0.76~(22),)+0.65
&& ~(20),), and we obtain the value 38.5 for (O, ~T

x ~(11),)'/(O, ~T~(1 1),)' compared with its empiri-
cal value, & 59.0.
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