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It is shown that a d-dimensional statistical system of a single U(1) variable, exp(iy),
whose Hamiltonian is invariant under the transformation y(x&, ... ,x&) y(x~, .. . ,x~)
+ A(x3, . . . ,x„), with A an arbitrary function, has no Iong-ra~~e order, so that (exp(iy))
=0 for all nonzero temperatures. Moreover, the full planar symmetry reQected in the
above transformation law is also unbroken for all T & 0. When d = 2 the usual Mermin-
Wagner result is recovered. Various extensions and physical implications of this theo-
rem are briefly discussed.
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The most usual types of statistical theories are
either those with a simple global symmetry, such
as the Ising or O(N) Heisenberg models, or those
with local gauge symmetries. Between these two
extremes, however, are theories with Hamilto-
nians which are invariant under a symmetry
transformation expressed by a gauge function
which is an arbitrary function of only a subset of
the spatial coordinates of the system. If, for a
d-dimensional theory the gauge function is an ar-
bitrary function of only d —n coordinates, we will
say that the theory has an n-dimensional sym-
metry.

Of particular interest is the case n=2. For d
=2 this case corresponds to the usual class of
globally symmetric two-dimensional spin sys-.
tems. For d = 3, several statistical models with
n = 2 have been studied in the literature. " When
these models are endowed with a continuous sym-
metry, they show an absence of long-range order,
as well as a number of other intriguing properties.
Furthermore, such three-dimensional models
may well correspond to certain helical magnetic

or liquid-crystal systems, in which there is an
absence of long-range order for all T &0 for cer-
tain regions of the phase diagram.

Unlike the two-dimensional case, where the
global symmetry expresses the full content of the
&=2 symmetry, the global symmetry of a theory
with n =2 and d ~ 3 is just a subset of the full n
= 2 symmetry corresponding to n'(global) =d. In
view of the central role of global symmetry break-
ing in statistical physics, it is important to ad-
dress the possibility that the full m= 2 symmetry
may be broken without breaking the global sym-
metry. ' In this Letter we will show that for d ~ 2

all theories which are theories of a single U(1)
spin, exp(ip), which have n =2 have no long-range
order (i.e. , no spontaneously broken global sym-
metry), for any nonzero temperature. Moreover,
we will show that for d ~ 3 the full n =2 symmetry
is also not broken for any T &0. Of course, just
as in the case of the two-dimensional x-y model,
these theories may have phase transitions despite
the absence of symmetry breaking. Indeed, some
three-dimensional models with g =2 have been
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analyzed and found to undergo a phase transition
into a low-temperature phase with no long-range
order.

The proof involves three steps. First we will
generalize the framework of the usual proof of
the Mermin-Wagner theorem' to accommodate
the larger class of theories in which we are in-
terested. Next we will argue that the existence
of the n = 2 symmetry implies the existence of a
(d —2)-dimensional surface of singularities in the
propagator for the spin waves of the theory. Fi-
nally, we will show that, as a result of these sin-
gularities, a certain integral diverges with the
size of the system, and, as in the proof of the
Mermin-Wagner theorem for two-dimensional

theories, this divergence implies that the sym-
metries (global and full n = 2) are not spontaneous-
ly broken for T &0. The Letter will conclude with
a few ancillary comments.

Consider a theory with a Hamiltonian, H((y j),
where cp(x) is an angle-valued variable associat-
ed with a lattice site with coordinate x. For sim-
plicity we will take our theory to be defined on a
d-dimensional hypercubic lattice, but this re-
striction is not essential for the proof. Follow-
ing the authors of Ref. 5 we will use the Bogoliu-
bov inequality'

-'((A, A'j&([[C,H], C']& ~ &gTI &[C,A]&I'.

A~ (C~) is the Hermitian conjugate of A (C). C
is defined by

C„~q (x)& =~y(x) —6y cosk x&+~(p(x) —6q sink x&. (2)

The state ~y(x)& is the state defined by the set fy(x)j for all points, x, on the lattice. A commutator
is denoted by [,], (, j is an anticommutator, 6y is a small constant field, and

&0& = TrOe '"/Tre '",
with

To study the two cases of global and n= 2 symmetries we need two different sets of A operators:
Global symmetxy. —

A~~ y (x)& =Q- cosk ~ y sing (y)~ 4, (x)& +Q- sink ~ y sing(y)
~
4, (x)&.

n =2 symmetxy. —
A„~ y(x)& =P-[cosk ~ y —cosk (y —M)]4 (y (y))~ C,(x)&++&[sink ~ y —sink ~ (y —M)]b gy(y))~ 4, (x)&, (4)

where

I C i(x)& -=I y(x) +6y cosk ~ x&, I C. (x)& =-
I p(x)+6@ sink x&, a„(q (y)) -=sin[@(y) —q (y+M)].

In Eq. (4), M is a fixed vector with a nonzero projection out of the plane of the n = 2 symmetry; e.g. ,
if the gauge function A is independent of x, and x, and L = (0, 0, 1, 1, . . . , 1), then L ~ Mw 0.

Let us first derive the condition for the absence of a spontaneous breakdown of global symmetry. To
do this we consider the Hamiltonian of the system in an external magnetic field h:

H =Q-„H,(q(x))-h+-„cosy(x).

We assume that H, can be written in the form

+HO(p(x)) =QQ f&(~&(4'(x) j))
X x p= j-

where
~(P)

~,((y (x)j)= Q „-y(x;).

(6)

H, contains s different kinds of interactions. &~((cp(x) j) is a linear combination of y's on lattice sites
in the neighborhood of some point x; x,. =x+r, There are no explicit long-range forces, so that ~r,. ~

is finite. We assume further that f~ can be expanded in a Taylor series about the zero of its argu-
ment':

f (e) =f (o)+f '(0)~ +-'f "(0)~'+.. . .
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We will now use (2) and (3) to calculate (1), expanding in powers of 6y. For small 6y we have

([C„A„])= ~y(g-„cosy (x)) =~N6y,

where N is the number of lattice sites and m is the magnetization. Furthermore,

(7)

(8)

kBT~ 1
N g y5 ~ey+hm)

where the sum over k is over the first Brillouin zone, and

P —,'((Ay, Ay~])- —,'P g cosk (x —x')- N'.

Finally,
e(u)

(p(x)l [[CyH], Cy'](p(x)& =(&p)'g(h cosy(x)+5" f "(& ) P c,; c„.cosk ~ (r, —r )$,
@= 1 i, j=1

where (r,.) is the set of q(p) r's defined after Eq. (6)
We now assume that the thermal average, (f~"(Q~((cp(x)]))) ~ y for each p, where y is some positive

number. Then, taking the thermal average of (9), we have
c(P)

([[C„,H], C„])~ (6')~Ã[hm +y Q 5~ c~;c» cosk ~ (r, —r,.)]. (1
1

Using (7), (8), and (10) in (1), we finally obtain

e(P) 2 &(P)
e~= g c~,. cosk ~ r,. + g c~,. sink ~ r,.

j=l j= 1
(12)

We will now show that the integral (sum over k) on the right-hand side of (11) diverges as h —0 in the
thermodynamic limit. First we note that if H, is invariant under

p(x„.. . ,x,) —y(x„.. . ,x, ) +A(x„... ,x,),
then H, can be written in the form of Eq. (6) in which each of the f~ is invariant under (13). This
means that the c~,. in Eq. (6) must satisfy

cp, =0,

(13)

(i4)

where the set n includes all those spin labels that lie in any given (x„x,) plane. (In continuum notation
this is equivalent to the statement that H, is a function of q only through B,y and B,y. ) With use of
(14), it is clear that, for k, =k, =0, &~=0. Moreover, e~ can obviously be expanded in a power series
in k, and k„so that, in general, we can write

ep =k, 'up(k) +k, vp(k) +k,k2zop(k), (16)

where u~, e~, and so~ are finite functions of k.
We consider now a large lattice of linear dimension L. Inserting (15) into (11), converting the sum

over k into an integral in the usual way, and defining u(k) = yQu~(k), etc. , we have

@AT 1
(2y) ~ „y, k,*u(k)+),,'y%)+k, ).,u tk)+km)

(16)

From (12), it is clear that e~-0. Therefore, focusing attention on the region of integration where k,
and k, are close to 1/L, it is easy to see that, when h -0, the integral in (16) diverges at least as fast
as lnL. Hence, in the thermodynamic limit, I'-0 as h -0, and the system has no long-range order.

To prove that there is no spontaneous breaking of the full &=2 symmetry, we follow nearly the same
path that led to (16) with the following changes: Instead of expression (3) we use expression (4) in the
Bogoliubov inequality, (1), and instead of the global-symmetry-breaking term of Eq. (5), we add to H,
a term which respects the global symmetry but breaks the n =2 symmetry. We thus consider the Ham-
iltonian

H =g „H,((p (x)) -h~g-„cos[y (x) —p (x+M)]. (17)
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With these changes it is straightforward to compute the inequality analogous to (16) which will yield
a bound. on the breaking of the a=2 symmetry. The result is

4ksT "
~ $„'(k)

(18)

where

~s = (cost y (x) —y (x+ M)]). (19)

Since M ha.s a component out of the (x„x,) plane,
the numerator of the integrand in (18) does not
vanish when k, =k, =0. Because the integrand in
(18) is positive, the analysis proceeds as for Eq.
(16). The integral diverges at least as fast as
lnL in the limit h„-0, because of the contribu-
tion near k, =k, =0. Thus, m„'= 0 in the thermo-
dynamic limit and the n = 2 symmetry is not spon-
taneously broken.

We conclude with a few remarks. First, our
result is really more general than we have stated
it. The condition that the otherwise arbitrary
function A be independent of x, and x, is only one
of a variety of constraints on A that will allow us
to prove an absence of long-range order. A quick
review of the argument leading to Eq. (15) indi-
cates that a large class of conditions on A of the
form O,A =OQ =0, where 0, and 0, are linearly
independent differential operators (or their lat-
tice equivalents), will be sufficient to produce a
form for e~ which vanishes fast enough as two of
the components of k go to zero to ensure that the
integral in (16) diverges for h -0 and L- ~. This
is the type of condition obeyed by the gauge func-
tion in the theory discussed in Ref. 1. Second, it
is clear from the derivation of expression (16)
that a d-dimensional U(1)-invariant theory with

an n= 1 symmetry will also lack long-range or-
der. In this case, the corresponding integral on
the right-hand side of (16) will diverge at least
as fast as L. The absence of lang-range order in
such a system can be thought of as having a some-
what trivial origin in that the model can be de-
coupled into a stack of (d —1)-dimensional mutual-

ly noninteracting models. This is quite analogous
to what happens in a genuine one-dimensional
model with finite- range interactions. Finally,
we remark that although we have restricted our-
selves to systems with a U(l) symmetry, we ex-
pect, on general grounds, that an analogous the-
orem will hold for a large class of suitably de-

fined d-dimensional, continuously symmetric
non-Abelian theories with ~ = 1 or n =2.
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