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It is shown that a d-dimensional statistical system of a single U(1) variable, exp(i¢),
whose Hamiltonian is invariant under the transformation ¢ (%, ...,%;) =@ (%1y... 4%g)
+A(xgy...4%), With A an arbitrary function, has no long-range order, so that (exp(i¢))
=0 for all nonzero temperatures. Moreover, the full planar symmetry reflected in the
above transformation law is also unbroken for all 7> 0. When d = 2 the usual Mermin-
Wagner result is recovered. Various extensions and physical implications of this theo-

rem are briefly discussed.
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The most usual types of statistical theories are
either those with a simple global symmetry, such
as the Ising or O(N) Heisenberg models, or those
with local gauge symmetries. Between these two
extremes, however, are theories with Hamilto-
nians which are invariant under a symmetry
transformation expressed by a gauge function
which is an arbitrary function of only a subset of
the spatial coordinates of the system. If, for a
d-dimensional theory the gauge function is an ar-
bitrary function of only d —»n coordinates, we will
say that the theory has an n-dimensional sym-
metry.

Of particular interest is the case n=2. Ford
=2 this case corresponds to the usual class of
globally symmetric two-dimensional spin sys-
tems. For d=3, several statistical models with
n=2 have been studied in the literature.”?* When
these models are endowed with a continuous sym-
metry, they show an absence of long-range order,

as well as a number of other intriguing properties.

Furthermore, such three-dimensional models
may well correspond to certain helical magnetic

or liquid-crystal systems, in which there is an
absence of long-range order for all T >0 for cer-
tain regions of the phase diagram.

Unlike the two-dimensional case, where the
global symmetry expresses the full content of the
n=2 symmetry, the global symmetry of a theory
with »=2 and d = 3 is just a subset of the full n
=2 symmetry corresponding to »’(global)=d. In
view of the central role of global symmetry break-
ing in statistical physics, it is important to ad-
dress the possibility that the full =2 symmetry
may be broken without breaking the global sym-
metry.® Inthis Letter we will show that for d=> 2
all theories which are theories of a single U(1)
spin, exp(¢), which have »=2 have no long-range
order (i.e., no spontaneously broken global sym-
metry), for any nonzero temperature. Moreover,
we will show that for d = 3 the full » =2 symmetry
is also not broken for any 7 >0. Of course, just
as in the case of the two-dimensional x-y model,
these theories may have phase transitions despite
the absence of symmetry breaking. Indeed, some
three-dimensional models with » =2 have been
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analyzed and found to undergo a phase transition
into a low-temperature phase with no long-range
order.*

The proof involves three steps. First we will
generalize the framework of the usual proof of
the Mermin-Wagner theorem® to accommodate
the larger class of theories in which we are in-
terested. Next we will argue that the existence
of the n=2 symmetry implies the existence of a
(d - 2)-dimensional surface of singularities in the
propagator for the spin waves of the theory. Fi-
nally, we will show that, as a result of these sin-
gularities, a certain integral diverges with the
size of the system, and, as in the proof of the
Mermin-Wagner theorem for two-dimensional

Cilo @) =|@ &) = 6¢ cosk + X) +| ¢ &) - 6¢ sink - X).

theories, this divergence implies that the sym-
metries (global and full »=2) are not spontaneous-
ly broken for 7' >0. The Letter will conclude with
a few ancillary comments.

Consider a theory with a Hamiltonian, H({¢}),
where ¢ (X) is an angle-valued variable associat-
ed with a lattice site with coordinate X. For sim-
plicity we will take our theory to be defined on a
d-dimensional hypercubic lattice, but this re-
striction is not essential for the proof. Follow-
ing the authors of Ref. 5 we will use the Bogoliu-
bov inequality®

:{A,ATNlc,H],c™h=ryTI(C,ADIZ. (1)

A" (C") is the Hermitian conjugate of A (C). C
is defined by

@)

The state |¢ X)) is the state defined by the set {¢p ®)} for all points, %, on the lattice. A commutator
is denoted by [, ], {,} is an anticommutator, 5¢ is a small constant field, and

(0)=TrOe" ##/Tre" B4,
with
B=®sT) N

To study the two cases of global and »=2 symmetries we need two different sets of A operators:

Global symmetry.—

Ao ®) =5 cosk - § sing )| @, &) + 37 sink - § sing §)| ,G). (3)

n=2 symmetry.—

A @) =33 3[cosk  § — cosk - F - M)A o @) &, &) +T33lsink - § = sink - § - M)]A (o G| &.X), (4)

where

|®,&)=|¢X)+b6¢ cosk - X),

|8,&)) =] &) +6¢ sink- X),

A o@)=sinlo ) - ¢ F +M)].

In Eq. (4), M is a fixed vector with a nonzero projection out of the plane of the n=2 symmetry; e.g.,

if the gauge function A is independent of x, and x, and L= (0,0,1,1,...

,1), then L. M#0.

Let us first derive the condition for the absence of a spontaneous breakdown of global symmetry. To
do this we consider the Hamiltonian of the system in an external magnetic field 4 :

H=Y)3H(¢X)=-h>;3cosg ).

We assume that H, can be written in the form
THL =0 £, @,{e&®D),
X X p=1

where

a(p)
2, @N=3 c,0&).

(5)

(6)

H, contains s different kinds of interactions. Qp({(p X)}) is a linear combination of ¢’s on lattice sites

in the neighborhood of some point X; X;=X+T,.

There are no explicit long-range forces, so that |T,|

is finite. We assume further that f, can be expanded in a Taylor series about the zero of its argu-

ment”:

F@)=f(0)+f"(0)z +3f"(0)®+... .
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We will now use (2) and (3) to calculate (1), expanding in powers of 6¢. For small ¢ we have

([ChyALD =895 cosp X)) =m N, (7
where N is the number of lattice sites and m is the magnetization. Furthermore,
z ${ar,A1TH< 32 3, cosk- &-%)< N2 @)
T X%
Finally,
s a(p) . N
(o@NCt,H], o &) = (w)zz;){h cosp &) +3 £,"(®,) 3 c,ic, coske &, ~F,)}, 9
X p=1 i, j=1

where {T,} is the set of ¢(p) T’s defined after Eq. (6)
We now assume that the thermal average, (f,”(2,({¢ ®)})) <y for eachp, where y is some positive
number. Then, taking the thermal average of (9), we have

a(p) - N
<[[Ck,H], CkT]> =< (5¢)2N[hm +7’E Z‘/ CpiCpj cosk - (_f'i - rj)]' (10)
P i =1
Using (7), (8), and (10) in (1), we finally obtain
kgT 1 >'1
N . 11
m < N ?)’Epel,ﬂ’tm (11)

where the sum over k is over the first Brillouin zone, and
a(p) - o\ /) - o )2
€,= Z}l cp;jcoskT; | + El cp;SinkT; ) . (12)
= i=

We will now show that the integral (sum over k) on the right-hand side of (11) diverges as & — 0 in the
thermodynamic limit. First we note that if H, is invariant under

POry e %)= @lcy, oo X))+ A, L el %), (13)

then H, can be written in the form of Eq. (6) in which each of the f, is invariant under (13). This
means that the c,; in Eq. (6) must satisfy
27 €;=0, (14)
jea
where the set a includes all those spin labels that lie in any given (x,,x,) plane. (In continuum notation
this is equivalent to the statement that H, is a function of ¢ only through 8,¢ and 8,¢.) With use of
(14), it is clear that, for 2,=k,=0, €,=0. Moreover, €, can obviously be expanded in a power series
in k, and k,, so that, in general, we can write

€, =k, u, &) +k,%, &) +k kyw, &), (15)

where u,, v,, and w, are finite functions of k.
We consider now a large lattice of linear dimension L. Inserting (15) into (11), converting the sum
over k into an integral in the usual way, and defining (&) =y u,(K), etc., we have

( L2 1 >-1 (16)
@)Y J,L T kuE) r &) R kaw®) vhm )

From (12), it is clear that €,20. Therefore, focusing attention on the region of integration where %,
and k, are close to 1/L, it is easy to see that, when 2 — 0, the integral in (16) diverges at least as fast
as InL. Hence, in the thermodynamic limit, m?-0 as 2 -0, and the system has no long-range order.

To prove that there is no spontaneous breaking of the full »=2 symmetry, we follow nearly the same
path that led to (16) with the following changes: Instead of expression (3) we use expression (4) in the
Bogoliubov inequality, (1), and instead of the global-symmetry-breaking term of Eq. (5), we add to H,
a term which respects the global symmetry but breaks the n=2 symmetry. We thus consider the Ham-
iltonian

H=3)3H¢ )=k, 3% cosly &) - ¢ &@+M)]. 17)

m2<
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With these changes it is straightforward to compute the inequality analogous to (16) which will yield
a bound on the breaking of the » =2 symmetry. The result is

" z$<i@£ ap £, E)
HEN@Y )T T R uE) v ®) Rk w ) + £, @) ymy,
where

m y=(coslo &) - ¢ G+M))). (19)

Since M has a component out of the (x,,x,) plane,
the numerator of the integrand in (18) does not
vanish when &, =k,=0. Because the integrand in
(18) is positive, the analysis proceeds as for Eq.
(16). The integral diverges at least as fast as
InL in the limit #,~ 0, because of the contribu-
tion near k,=k,=0. Thus, m,”>=0 in the thermo-
dynamic limit and the n=2 symmetry is not spon-
taneously broken.

We conclude with a few remarks. First, our
result is really more general than we have stated
it. The condition that the otherwise arbitrary
function A be independent of x, and x, is only one
of a variety of constraints on A that will allow us
to prove an absence of long-range order. A quick
review of the argument leading to Eq. (15) indi-
cates that a large class of conditions on A of the
form O,A =0,A =0, where O, and O, are linearly
independent differential operators (or their lat-
tice equivalents), will be sufficient to produce a
form for €, which \_r_anishes fast enough as two of
the components of k go to zero to ensure that the
integral in (16) diverges for 2z — 0 and L - «, This
is the type of condition obeyed by the gauge func-
tion in the theory discussed in Ref. 1. Second, it
is clear from the derivation of expression (16)
that a d-dimensional U(1)-invariant theory with
an n =1 symmetry will also lack long-range or-
der. In this case, the corresponding integral on
the right-hand side of (16) will diverge at least
as fast as L. The absence of long-range order in
such a system can be thought of as having a some-
what trivial origin in that the model can be de-
coupled into a stack of (d — 1)-dimensional mutual-
ly noninteracting models. This is quite analogous
to what happens in a genuine one-dimensional
model with finite-range interactions. Finally,
we remark that although we have restricted our-
selves to systems with a U(1) symmetry, we ex-
pect, on general grounds, that an analogous the-
orem will hold for a large class of suitably de-
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>-1, £,&)=1-cosk- M, (18)

|fined d-dimensional, continuously symmetric

non-Abelian theories withn=1 or n=2,
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