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Order-Disorder and Segregation Behavior at the Cu~A. u(001) Surface
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With use of low-energy Ne' scattering and low-energy electron diffraction both long-
range order and Au segregation have been found at the Cugu(001) surface Th. e Au con-
centrations in the first and second layers are essentially constant at 0.5 and 0, respec-
tively, for T = 400oC, beyond which they approach each other. Calculations of shadowing
for the ordered surface agree with experiment, e.g. , for shadowing of Cu atoms in the
second and third layers by Au atoms in the first layer.

PACS numbers: 68.20.+t, 64.60.Cn, 64.75.+g, 79.20.Nc

Cu, Au is a classic ordering alloy, with nega-
tive enthalpy of mixing and a critical. bulk order-
ing temperature T, =39o C. The bulk ordering
has been studied extensively. ' One may ask if
the ordered bulk arrangement [Fig. 1(a)], deter-
mined by x-ray diffraction, extends to the sur-
face and, if so, which layer is on top, the 50-50
Au-Cu or pure Cu; if antiphase domains and/ or

steps result in a mixed surface; and if surface
segregation of either element occurs. Low-en-
ergy electron-diffraction (LEED) studies' of the
(001}surface showed long-range order which de-
creased continuously with increasing tempera-
ture, not abruptly at 390'C as for bulk order.
Another LEED study' found long-range order on
the (001}and (111) surfaces but not the (011).
The first-layer type (Au-Cu or Cu) on the (001)
surfaces was not establi, shed in these studies nor
was segregation reported, but Au enrichment
was found by Auger electron spectroscopy (AES)
on polycrystalline Au-Cu films and a single-
crystal Cu, Au(111) surface" and attributed to
surf ace energy diff erence adjusted for atom
size. A prediction that ordering and segrega-
tion would inhibit each other was made in a theo-
retical analysis. '

Since the ordering and segregation of interest
occur in the first few atom layers, exceptional
surface sensitivity is required for con1position
analysis, such as that of low-energy ion scatter-
ing (LEIS, or ion-scattering spectroscopy, ISS)."
In this work we have used LEIS(TOF), the time-
of-flight version of low-energy ion scattering, "
which collects both the scattered neutrals and
ions, thereby avoiding the neutralization ques-
tions which attend electrostatic analysis of noble-
gas ions. The Cu, Au(001) target" was mounted
on a button heater in a two-axis goniometer. The
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FIG. 1. (a) Upper: Ordered arrangement of Au and
Cu in the bulk. Lower: Scattering geometry. (b) -{d)
Single-scattering yield from Au and Cu as function of
azimuthal angle ~~. Incidence angle g = 45"-. (b) 5-keV
Ne on ordered surface; (c) 5-keV Ne on disordered
surface; (d) 9.5-keV Ne on ordered surface. The crys-
tal was remounted between scans (c) and (d), shifting
the scan limits by about 50'.
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UHV scattering chamber has a 95-cm flight leg
and contains a LEED-Auger system and sputter
gun.

With a pulsed Ne' beam of 5- or 9.5-keV ener-
gy, incident at ] =45" or 35' from the surface
plane and scattered through 90', variations of
azimuthal angle v on the (001) surface permitted
composition analysis of the first and second lay-
ers and identification of scattering from Au and
Cu in the third layer. With the scattering plane
parallel to a [100J azimuth and g =45" ((110, axis
in and out}, single scattering events are restrict-
ed to the first layer; atoms in deeper layers are
shadowed by the first-layer atoms. The well-de-
fined single-scattering peaks for Cu and Au are
summed" after subtracting a background due to
double and multiple scattering (8'j,,

—20'% for Au,

40%%uo-60$ for Cu, depending on temperature).
The first-layer Au, Cu ratio is

N z„/N cU = ( You yew)(ocu +Au) ' '~

in which X is the number of atoms exposed to the
beam, F is the scattered yield of Ne ions plus
neutrals, o is the differential scattering cross
section derived from the Moliere approximation
to the Thomas- Fermi potential, " and cI corrects
for energy dependence of detector sensitivity. If
no foreign atoms are present the atom fraction
of Au in the first layer is then

X, ' = (N~u/NcU) '(1+N„„Ncu)~,
At 5 keV, o&U,'o&„=2.41 and cl =1.2. The second-
layer composition is determined from the scat-
tering yield of both first and second layers meas-
ured along a [110]azimuth at y= 35' incidence
angle ((111)axis in) (Au background 20 "jg —

30%%uo,

Cu 35%%up
—60%%up), Single scattering is observed

only from the first two layers. Scattering from
second-layer atoms is enhanced by "wedge fo-
cusing"" in which the shadow cones of first-layer
atoms concentrate ion flux on second-layer
atoms. This is taken into account by the intro-
duction of focusing factors which relate the scat-
tering yields and compositions of the first and
second layers as follows:

1+2 j. 1
.~CU y1 2 I

A similar relation holds for Au, and it can be
shown that

(y y }c.U YAll X c.l&

J
-I

2 J(y y )AU y(U ~AU
i

l
1+2 1

in which I' = fc„,'fq„, and other quantities are

measured. We assume E= 1 without serious er-
ror, we believe, especially in the temperature
region of disorder above 400'C where X, " first
becomes signif icant.

Figures 1(b}-(d) show variations in single-scat-
tering yield from Cu and Au [Zs&(Cu} and Z;s(Au)]
as a function of azimuthal angle, at g= 45', for
three conditions. Scattering of 5-keV Ne from
an ordered surface, annealed overnight at 200'C
but measured at room temperature, is shown in
Fig. 1(b). The broad minima centered around
the [100]azimuths represent first-layer scatter-
ing and the yield ratio 'Z(Au)/ (Cu) = 2.93 corre-
sponds to the composition Auo, Cuo, . [The low
value of '(Au) at v =-15"was not reproduced in
later measurements. ] At the [110]azimuth,
where both first and second layers are exposed,
: (Cu} reaches a value 4.7 times the [100J value,

while Z(Au) is only 1.25 times the [100]value;
the second layer is mainly Cu and Eq. (2) gives
a second-layer composition of Aup p6Cup 94 The
layer compositions correspond closely to the
arrangement of Fig. 1(a). A scan taken at 550'C,
well above T„ is shown in Fig. 1(c). The in-
crease in Z(Au) at the [110] azimuth indicates
enrichment of Au in the second layer. Composi-
tions derived in this case are first layer Au, «-
Cup 52 sec ond layer Aup 2pCup Bp At this temper a
ture (100) layers in the bulk must have the aver-
age bulk composition Au, »Cup 75 and the second
layer has nearly reached it, but in the first layer
surf ace segregation prevails.

The first- and second-layer compositions as
functions of temperature are shown in Fig. 2.
Annealing times before LEIS(TOF} analysis at
temperature were 60-70 h at 25'C, 20 h at 100
and 200'C, 4 h at 300-450'C, and 2-3 h at higher
temperature. X,"" is constant at -0.52 up to
400 'C but then decreases to 0.38 at 830'C, pre-
sumably heading for 0.25. Competition between
ordering and segregation must cause the change
in slope at 400 "C. Similar behavior has been
predicted for the (011}surface of A, ,B, , bcc
ordering alloys. '4 Ordering dominates below T„
but the relatively weak Au segregation tendency
may aid in keeping X,'U at -0.5 up to 400 "C even
though LEED superlattice spots fade progressive-
ly at lower T,' evidently indicating only intra-
planar disorder. Segregation also prevents a
sharp drop to 0.25 at 400 "C. The entropy term
in the free energy of segregation 6I, = ~~
—TAS~ should aid segregation below T, but op-
pose it above, since segregation represents less
order and more order, respectively, in the two
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tance of 4.0 A, and there is no "hole" in Fig.
3(b) for Cu at (t =45, y =30 but there is in 4(a)
for Au. However, for 9.5-keV Ne' the shadow
cones are smaller and Cu atoms in the third lay-
er are exposed to the beam, producing a maxi-
mum in Z(Cu) in phase with that in Z(Au) at y
=30' [Fig. 1(d) ] and a small opening centered at
(27, 43) in Fig. 3(d). The Z(Au) peaks in Fig. 1(b)
indicate fA,,(third layer) = 2.3-3, not unreason-
able, "but factors of 5-8 indicated in Fig. 1(d)
are surprising; some fifth-layer scattering is
suspected. Not only is the third-layer Cu shad-
owed from 5-keV Ne at y = 30 and 60 but so is
half of the second-layer Cu, according to a
second-layer shadow calculation not shown here,
and the Z(Cu) curve in Fig. 1(b) confirms this.
This partial shadowing probably involves only
the second-layer Cu in [100]rows beneath Au

rows. Computer simulation of the scattering will
be needed for more complete understanding of
the scattering behavior" but the shadow-cone
analysis is a useful first step.
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