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Unlimited Electron Acceleration in Laser-Driven Plasma Waves

T. Katsouleas and J. M. Dawson
University of California, I.os Angeles, California 90024

(H,eceived 8 April 1983)

It is shown that the limitation to the energy gain of 2(ru/~P mc of an electron in the
laser-plasma beat-wave accelerator can be overcome by imposing a magnetic field of
appropriate strength perpendicular to the plasma wave. This accelerates particles par-
allel to the phase fronts of the accelerating wave which keeps them in phase with it.
Arbitrarily large energy is theoretically possible.

PACS numbers: 52.75&i, 29.15.-n, 52.60.+h

Recently there has been a great deal of interest
in using laser-plasma interactions to accel.crate
particles to high energies more rapidly than the
20 MeV/m to which linear accelerators are cur-
rently limited. ' The beat-wave acce1.erator is
one scheme proposed by Tajima and Dawson' to
excite electrostatic plasma waves which can ac-
cel.crate particles; the attraction of the method
is the extremely large electric fiel.ds which can
be generated (order 10' V/cm). Whereas parti-
cles in the beat-wave acceI.erator can gain only
a finite amount of energy before they get out of
phase with the beat wave, by introduction of a
perpendicul. ar magnetic field the particl. es are
def1.ected across the wave front and thereby pre-
vented from outrunning the wave. The partic1. es
may be accelerated to arbitrarily high energy as
they ride across the wave fronts l.ike surfers
cutting across the face of an ocean wave (see Fig.
1).

Sugihara and Midzuno' and Dawson et al.' have
shown that classical. particles trapped by a per-
pendicularly propagating el.ectrostatic wave are
acce1.crated until. they detrap near the E &&8 ve-
locity (cE/B). In this Letter we consider the rela-
tivistic effects introduced when the E & B vel.ocity

A

B, z

d(y V, )/dt = —~,V„,

y (I V 2/Q2 V 2/c2) 1/2

(2)

where ~, is the nonrelativistic cyclotron frequen-
cy qB/mc and V„and V, are velocities in the x
and y directions, respectively. To solve for the
partic1. e's motion we assume that it is trapped by
the wave. The criterion for the particle to be
trapped can be obtained by examining the x com-
ponent of the force on the partic1. e in the suave
frame:

E„=q (E,sink x, + y&z V,'B/c),

where y ~h
= (1 —Vp„'/c') ' ', V~„= ~/k, x, = x —V~„t,

and V,
' is the y velocity in the wave frame. The

first term of the Lorentz force is the trapping
term and the second is the gyratory or detrapping
term. Therefore, an initially trapped partic1, e
can never detrap if

is greater than the speed of light (i.e. , E & B) and
when the wave's phase velocity is not smal. l. com-
pared to c.

We begin by giving a general. treatment of the
trapped-particl, e motion analytica1. ly and numeri-
ca1.1y, followed by appl. ication of these results to
the beat-wave example. We consider a longitud-
ina1. plane-wave el.ectric field and uniform mag-
netic f iel.d,

E =E,sin(kx —(ot) x, B=Bz.
The equations of motion for a particle of charge
q and rest mass m are given by

d(yV„)/dt = (qE,/m) sin(kx —~t )+ tc, V, , (1)

& P~& ~&0. (4)

x, E

FIG. 1. An electron trapped by a potential trough
moving at 0

&
sees an electric field from the Lorentz

transformation y &0 h
x 5/c which accelerates it

across the wave front.

For the zeroth-order motion we assume that
(4) is satisfied so that we may take V, =V&q. In-
tegrating equation (2) and substituting from (3)
gives

y „(1+tv, 't'V '/c')'~'
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FIG. 2. Velocity-space trajectory of a particle in a
low-phase-velocity wave (V~1,

——O.l c, Eo/B =1.5, ~/~
=2).

~, +(~,'/r) ~, = —(y,h'/y')~, '~,i, f,
where ~~ = (eE,k/m)'/' is the nonrelativistic
bounce frequency. This driven-oscillator equa-
tion describes the bounce motion of a particle in
the potential trough of the wave and its shift out
of the bottom of the potential well due to the rel-
ativistic mass increase and the V, &&8 force.
From the decreasing bounce frequency and adia-
batic invariance of the x motion we obtain the
following expression for the bounce amplitude in
velocity space:

(6)

for the acceleration across the wave front. Fig-
ures 2 and 3 show the velocity-space trajectories
obtained numerical. ly for negativel. y charged par-
ticles trapped in low- and high-phase-velocity
waves, respectively. In both cases, the parti-
cles' total. vel.ocity approaches asymptotically the
speed-of-light circle as predicted by Eq. (5).

The higher-order motion observed in Figs. 2

and 3 can be represented by the first-order ex-
pression for Eq. (1):

FIG. 3. Velocity-space trajectories of particles in a
high-phase-velocity wave (Vzt,

——0.& c, Ep/B = 2.5, &ul&u~

=9) for initial velocities {a) equal to and (b) slightly be-
low the phase velocity.

r(X) = r,~'X~,V,~/c'+ r,h. (»)

40

Eq. (6) to be roughly

—VD~'/c

(~/~. )(E.iy, h &) '

For the parameters of Fig. 3(a), V„, = —0.08c in
agreement with the figure. For particl. es which
start out slightly slower than the wave the accel.-
eration is more nearly monotonic as shown by
Fig. 3(b).

Although the velocity of the particles is asymp-
totic to e, their energy continues to increase in-
definitely. The total energy as a function of dis-
tance traversed across the wave front can be
found by integrating (5) and eliminating t in favor
of y in expression (3) for y. Thus,

where V, is the initial velocity bounce amplitude
and (yph V~B/cEO)2 «1. This accurately de-
scribes the bounce amplitude observed in Fig. 2.
In the high-phase-velocity examples of Fig. 3
the accel.eration is so rapid that onl.y after the
particles have neared their asymptotic values
does a slow bounce motion appear. However, an
initial velocity shift is visible in Fig. 3(a) as the
particle falls behind the wave because of its rela-
tivistic mass increase, and can be shown from

20

0
0

(c/(u, )

FIG. 4. Total particle energy {ymc2) vs distance
traveled (g) in the direction of the wave Q) or across
the vrave front (y).
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Alternatively, in terms of distance in the direc-
tion of the wave, we have

y(x) y (1+ ~ 2 x2/c2)1/2 (7b)

These are plotted in Fig. 4 along with the numer-
ical results corresponding to the particle of Fig.
3(a). It is clear from Eq. (7) that a high-phase-
velocity wave is advantageous for rapidly accel-
erating particl. es in addition to minimizing the
damping of the trapping wave by the thermal. plas-
ma.

We now appl. y our acceleration results to the
example of the fast el.ectrostatic (upper hybrid)
wave which may be created by the beat-wave
technique' or by forward Haman scattering of a
single incident laser beam. ' In this case, the
phase vel.ocity of the el,ectrostatic wave is the
group vel.ocity of the incident wave; namely, Vp&
= c(1—~~'/~, ')'~'= ~„„/k = &u~ /k [~, is the angu-
l.ar frequency of the incident laser; ~~ is the
plasma frequency (su~'= 4wn, e'/m, ); e is the elec-
tronic charge; ~UH =~~ +~ce t RO is the plasma
density; and the subscript e denotes electron
quantities]. By approximating cuUH = &o~ we have
neglected the effect of the magnetic field on the
dispersion properties of the ylasma wave. This
is justified by the trapping inequal. ity (4) which
takes the form

~&/~, &y,~/e, (8)

where we have taken E, to be a fraction & of the
field given by the cold wave-breaking limit'
(4@en,/k). Normal, ly one would take & to be
enough l.ess than I that the cold background plas-
ma cannot be trapped [order (1-3)V,&/c; V,„is
the plasma thermalvel. ocity]. In this way inject-
ed high-energy particl. es can be preferential. ly
aceel.crated.

Final. iy, with Vz&= ~,/or~ we obtain the change
iny per unit distance from Eq. (7):

by/b. y = wc~ co, /conc, by/bx = cu, m, /&u~',

where the latter expression is val. id for ao, t»1.
If we multiply by the rest energy (mc') the mass

dependences cancel, and we obtain from these
and inequality (8) the following handy formulas
for the rate of energy gain of either electrons or
protons:

BgG/n~e&p& c,
bU/by = (30 GeV/cm)(BgG/n„X „)I/X „,
bU/&x=(0. 1 GeV/cm)(B&~/n„X„)Kn„,

(10a)

(10b)

where B&~ is the magnetic fiel.d in units of kil.o-
gauss, n„ is pl.asma density in 10'6/cm', and X „
is the wavelength of the incident laser in microns.

Several examples are presented in Table I with
length (b,x), width (by), and incident laser power
(P,.) requirements for accelerating particles to
1 TeV. The power requirement is given in watts
per square centimeter instead of watts since the
total. power depends on 4y and how small the la-
ser can be focused in the s direction. The length
requirements of the unmagnetized beat-wave ac-
celerator (b.xB&A) corresponding to the same
wavelength laser and same & are al.so given. In
contrast to the unmagnetized case, arbitrarily
higher energies can (theoretical. ly) be reached
with our arrangement, the Surfatron, by merely
extending the device.

An advantage of the Surfatron accel,eration
mechanism is that the yower radiated is negligi-
bl.e. If Vzh is nearl. y c, a trapped particle's ve-
locity is primaril. y in the direction of the wave
whil. e its accel.eration is primarily perpendicul, ar
to the wave. Thus, the power radiated will be'

P y-'-[(P—)' (PxF)']= — y'p'/y '
3 c 3 c ph

(p = V/c) which is iess by the factor y „~ than
that of a conventional. linear accel.erator.

The real. izability of a Surfatron acce)erator de-
pends on the successful extension of current tech-
nologies. To keep the laser beam from spread-
ing, one might use a yl.asma wave guide with the
plasma density slightly lower at the center of
the channel. than at the edge. To confine a diffrac-
tion-limited beam of width 4 one needs an in-

'TABLE I. Sample parameters to reach 1 TeV.

n (cm ) ). (pm) & B~G by (m) bx (m) bxp~A (m) P. (W/cm )

1O"
10
1O"

10 0.9 90
1 0.5 50
0.3 0.2 600

3
0.6
0.5

35
20

5

3500
850

1000

1015

1016

5x1O"
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crease of plasma density at the edge of the chan-
nel. by Sx 10"m'/a' cm '. For a 30-ltm channel

width the density rise must exceed 3&10"cm '.
Such confinement of a 10-p. m CO, l.aser beam
over a distance of 3 m has been demonstrated ex-
perimental. jy' for a beam power of 10"W/cm'
and channel width of a few millimeters. Since
the accelerating electrons keep up with the light
pulse, the accelerating wave needs to remain
coherent onl.y in the vicinity of the light pulse and
not over the entire length of the plasma. The
y width of the beam might be provided by a cy-
lindrical lens.

CX particular interest to the beat-wave accel.er-
ator is the recent development of femtosecond
laser pul. ses. ' If these can be generated with suf™
ficient intensity it should be possible to guide
them over the required distance to accelerate
particles. However, for such short pulses the
plasma should not be subject to many of the in-
stabilities which will degrade the performance of
longer pulsed devices.
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