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Formation of Saturated Solitons in a Nonlinear Dispersive System
with Instability and Dissipation
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A simple one-dimensional nonlinear equation including effects of instability, dissipa-
tion, and dispersion is examined numerically. It is observed that for the strongly dis-
persive case the temporal evolution is characterized by formation of a row of solitary
pulses of equal equilibrium amplitudes. The width of each pulse is determined by the
relative importance of the growing and the damping effects. The equilibrium amplitude
increases as the dispersive effect increases.

PACS numbers: 47.10.+ g, 52.35.Mw

Formations of a row of saturated solitonl. ike
pulses in an unstable, dissipative, and dispersive
nonlinear system have been observed in the num-
erical solutions of the following equation:

u, + uu„+ eu„„+Pu„„„+yu„„„„=0,

where n, P, and y are positive constants charac-
terizing instability (self-excitation), dispersion,
snd dissipation, respectively. Equation (1) can
be used to describe the long waves on a viscous
fl.uid flowing down an inclined plane' and the un-
stable drift waves in plasma (the dissipative
trapped-ion modes with dispersion due to the fi-
nite ion banana width). ' For P = 0, Eq. (1) reduces
to that equation describing the chemical. reactions
which exhibit a turbulentlike behavior. '

Substituting u ~ exp(ikx+at) into the linearized
version of (1), one obtains the linear dispersion
relation 0 = nk' —yk'+ iP k'. Thus small. -ampli-
tude sinusoidal waves are l, inearly unstable (grow-
ing) for long wavelengths and stable (damping) for
short wavelengths. The maximum growth rate oc-
curs at the wave number k, „=(a/2y)'~'.

The existence of both instability and dispersion
indicates the possibility of a steady state, be-
cause the energy influx due to the self-excitation
is transferred through mode coupl. ing to short
wavelengths and is expected to be balanced by
damping due to the fourth-derivative dissipation
term. Energetically a steady state (in a statis-
tical sense) is anticipated for P = 0, but the tem-
poral. evolution of the waveform has been found
to exhibit a turbulentlike behavior. '

The purpose of this Letter is to investigate
what rol.e the dispersion (Pt 0) plays in such an
energy-transfer process. To do so, spatially
periodic solutions of Eq. (1) for combinations of
parameters a, P, and y were obtained numeri-
cally by a finite-difference method in space and
the Hunge-Kutta-Gil. l method in time. 200 spa-
tial mesh points were taken in the periodicity

length I.= 2 with periodic boundary conditions at
x= 0, 1.. Initial. conditions assigned were (a) Gaus-
sian random variables~ and (b) coswx. Among the
numerical. results obtained so far, those with
fixed n = 1.0&&10 ' and y = 5.066&10 ' are shown
I.n FIgso 1-3e

Figure 1 shows the temporal. evolution of u for
P = 0 with initial condition (a). The wave compo-
nents whose wavelengths correspond approxi-
mately to k „soon predominate. Waves with
roughl. y triangular shape appear and interact with
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FIG. I. Temporal evolution of u for initial condition
(a) with ~ =1.0x 10, p=p, and y=5.066x 10 ~.
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sol.iton solution

u = N, + N sech'f(N/12P)'i'[x —(N, + —', N) &]] .

In connection with the above points, I consider the
effect of finite but small a and y, say O(e), on
solution (2). This problem can be treated by the
two-timing asymptotic expansion. ' Introducing
the slow time seal. e T=- ~t, we seek a solution of
the form

u(x, t;e)= u'"(q, t, T) +au"'(q, t, T)+ O(e'), (3)

q =—[N(T)/12 p] fx —f [No+ ~N(T)]dt], (4)

where q is a normalized new space coordinate in
a moving frame and N is assumed to vary slowly
in time. Substitution of (3) and (4) into (1) yields
perturbation equations. The order-unity equation
gives u'"=N, +N(T)sech q. In order that (3) be
valid for long times, as long as t-O(e '), we re-
quire nonsecular behavior of u"' with respect to
t. This condition yields a first-order differential.
equation for N(T),

dN 4y 21aP
)dT 189P2 5y

(5)

It can be seen that the constant solution N„= 21nP/
5y is stable and N(T) approaches N„monotoni-
cally. ' For this value of N„, the characteristic
width of the soliton is given by / = (12P/ N)' '
= (20@/7n)'i' and the propagation speed is N,
+ ', N„= N, + —7'/5y.

For n, p, and y used in Fig. 3, the theoreti-
cal estimate of the equil. ibrium amplitude is N„
=16.85, whereas the numerically obtained am-
plitude is 16.64. The propagation velocity of a
row of pulses after t = 4.0 in Fig. 3 is N, + —', N
= 2.41, whil. e the analytical. resul. t gives 2.37.
The observed equilibrium ampl. itude 4.65 in Fig.
2 is larger than the theoretical estimate, 4.01,
due to the soliton assumption. However, the
asymmetry of the pulse shape in Fig. 2 indicates
that a sol.iton is not a good first-order estimate
because n andy are important in this case.

Note that the characteristic width l is deter-
mined sol, ely by o. and y and it is smaller than,
but of comparable order to, the wavelength at
the maximum growth rate, i.e., l =(20y/7&)' '
= 0.19(2m/k ~,„). Furthermore, the amplitude of
the soliton is proportional. to P, so that the satur-

ation ampl. itude increases as the dispersive ef-
fect increases.

A wave with sufficiently smal. l amplitude and
large width grows because the growth term eu„„
is more important than the damping term yu„„„,
for small, wave numbers. Since the Korteweg-de
Vries soliton decreases its width with increasing
ampl. itude, the width of a growing wave decreases
and increases the relative effect of damping l,ead-
ing to a slowdown of the rate of amplitude in-
crease. Meanwhil. e, the dispersion can inhibit
mode coupling and resul. t in saturation at higher
amplitudes for sufficient dispersion, which is
responsible for the fact that N is proportional.
to P. Therefore, N asymptotically approaches
the value N„ for which the growth just balances
the damping and al.so the dispersion bal.ances
the nonl. inearity.

In conclusion, I emphasize that computer solu-
tions show the growth of an initial. perturbation
followed by formations of a row of solitons for the
strongly dispersive case. Also to be emphasized
is that the existence of a dispersive effect can
bring about a kind of organization in the system
that exhibits a turbul. entl. ike behavior if the effect
of dispersion is compl. etely neglected. Further
detailed numerical results will be reported else-
where.
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