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A simple one-dimensional nonlinear equation including effects of instability, dissipa-
tion, and dispersion is examined numerically. It is observed that for the strongly dis-
persive case the temporal evolution is characterized by formation of a row of solitary
pulses of equal equilibrium amplitudes. The width of each pulse is determined by the
relative importance of the growing and the damping effects. The equilibrium amplitude
increases as the dispersive effect increases.

PACS numbers: 47.10,+g, 52.35.Mw

Formations of a row of saturated solitonlike
pulses in an unstable, dissipative, and dispersive
nonlinear system have been observed in the num-
erical solutions of the following equation:

+yu =0, (1)

U+ un, + ou,, +Bu o

XXX

where a, 8, and y are positive constants charac-
terizing instability (self-excitation), dispersion,
and dissipation, respectively. Equation (1) can
be used to describe the long waves on a viscous
fluid flowing down an inclined plane! and the un-
stable drift waves in plasma (the dissipative
trapped-ion modes with dispersion due to the fi-

nite ion banana width).? For =0, Eq. (1) reduces

to that equation describing the chemical reactions
which exhibit a turbulentlike behavior.?
Substituting u «< exp(ikx + ot) into the linearized
version of (1), one obtains the linear dispersion
relation 0 = @k® — yk*+iBk3, Thus small-ampli-

tude sinusoidal waves are linearly unstable (grow-

ing) for long wavelengths and stable (damping) for

short wavelengths., The maximum growth rate oc-

curs at the wave number %, = (a/27)/2,

The existence of both instability and dispersion
indicates the possibility of a steady state, be-
cause the energy influx due to the self-excitation
is transferred through mode coupling to short
wavelengths and is expected to be balanced by
damping due to the fourth-derivative dissipation
term., Energetically a steady state (in a statis-
tical sense) is anticipated for f=0, but the tem-
poral evolution of the waveform has been found
to exhibit a turbulentlike behavior.®

The purpose of this Letter is to investigate
what role the dispersion (B+ 0) plays in such an
energy-transfer process. To do so, spatially
periodic solutions of Eq. (1) for combinations of
parameters «, 3, and Yy were obtained numeri-
cally by a finite-difference method in space and
the Runge-Kutta-Gill method in time. 200 spa-
tial mesh points were taken in the periodicity

length L =2 with periodic boundary conditions at
x=0, L. Initial conditions assigned were (a) Gaus-
sian random variables* and (b) cosmx. Among the
numerical results obtained so far, those with
fixed =1.0X10"2 and v =5.066X107° are shown
in Figs. 1-3,

Figure 1 shows the temporal evolution of « for
B =0 with initial condition (a). The wave compo-
nents whose wavelengths correspond approxi-
mately to %2 ,,,, soon predominate. Waves with
roughly triangular shape appear and interact with
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FIG. 1.

Temporal evolution of 3 for initial condition
(a) with @ =1.0x 1072, g=0, and y=5.066x 10,
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FIG. 2. Temporal evolution of . The same as Fig. 1

except for g=4.84x 1074,

each other without further growth in average am-
plitude. No regularity or no formation of organ-
ized structure has been observed up to ¢ = 8.0.
This is a reproduction of the turbulentlike be-
havior in chemical reactions.?

A temporal evolution is shown in Fig. 2 for
B=4.84%x10"* with other conditions kept the same
as in Fig. 1. It is seen that waves corresponding
to k.« are initially formed at around ¢=0.4;
they grow while interacting with each other and
develop into a row of pulses of equal amplitude
at £=4.0. Once the amplitudes of the pulses are
equalized, the row of pulses travels as a whole.
It is interesting to note that the dispersion con-
tributes to form a kind of organized structure.

In Fig. 3, the temporal evolution is shown for
a strongly dispersive case f=2.0X1072 with ini-
tial condition (b). The initial smooth waveform
cosmx develops several humps, similar to soliton
breakup, after wave steepening by nonlinearity.
The humps interact with each other while grow-
ing., At{=4.0, the generated pulses almost line

up into a row of solitonlike pulses of equal ampli-

tude and travel as a whole up to ¢#=8.0.

Within the numerical computations carried out
so far, the following general features have been
found:

(i) The saturated amplitude of a row of pulses
is constant irrespective of initial conditions for
fixed a, B, and vy, but the number of pulses that
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FIG. 3. Temporal evolution of 4 for initial condition
(b) with g=2,0x 1073,

emerges depends on initial conditions. For ex-
ample, five pulses appear in Fig. 3 for the initial
condition (b) but nine for (a) with other conditions
kept unchanged.

(ii) The equilibrium amplitude increases and
each pulse approaches the Korteweg—de Vries
soliton when the dispersion becomes strong. As
the relative importance of dispersion decreases,
each equilibrium pulse deviates from a symme-
tric soliton shape and increases its asymmetry
as is seen in Fig, 2.

(iii) The numerical result in Fig. 3 shows that
the magnitudes of the terms in Eq. (1) are of com-
parable order initially, but those of the nonlinear
and the dispersion terms become one order high-
er when the equilibrium state is attained. Nor-
malization of (1) yields the parameter &=8/(ay)!/2
which represents the relative importance of the
dispersion. Although the critical value of 6 at
which transition from a turbulentlike to an equil-
ibrium state occurs has not been fixed yet, the
equilibrium solitonlike pulses exist at least for
8z 0(1). For numerical computations in Figs. 2
and 3, & is given by 2.15 and 8.89, respectively.

It is interesting to consider the case when Bu,,,
~ U, > oy, Y, . B a=y=0, Eq. (1) reduces
to the Korteweg—de Vries equation and admits a
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soliton solution
u =Ny+ N sech?{(N/12B)"2[ x - (N, + 3N)¢t]}.
(2)

In connection with the above points, I consider the
effect of finite but small o and v, say O(€), on
solution (2). This problem can be treated by the
two-timing asymptotic expansion.® Introducing
the slow time scale T=e€f, we seek a solution of
the form

ule,t;€) =u(,1,T) +eu®m,¢,T)+0(e?), (3)
n=[N(T)/12812{x - [ [Ny+IN(D)]at},  (4)

where 1 is a normalized new space coordinate in
a moving frame and N is assumed to vary slowly
in time, Substitution of (3) and (4) into (1) yields
perturbation equations. The order-unity equation
gives u'® = N,+ N(T)sech®;. In order that (3) be
valid for long times, as long as£~0(e™?), we re-
quire nonsecular behavior of #*? with respect to
t. This condition yields a first-order differential
equation for N(T),

aN _ 4y (21aB 2
ar - 18932< 5y 'N>N ' ®

It can be seen that the constant solution N,.=21a8/
5y is stable and N(T') approaches N, monotoni-
cally.® For this value of N, the characteristic
width of the soliton is given by 7= (128/N.,)'/
=(20y /7a)!/2 and the propagation speed is N,
+3N.=N,+Tap/5v.

For a, B, and y used in Fig, 3, the theoreti-
cal estimate of the equilibrium amplitude is N,
=16.85, whereas the numerically obtained am-
plitude is 16.64. The propagation velocity of a
row of pulses after ¢=4.0 in Fig. 3 is N,+3N.,
=~ 2,41, while the analytical result gives 2,37,
The observed equilibrium amplitude 4.65 in Fig,
2 is larger than the theoretical estimate, 4.01,
due to the soliton assumption. However, the
asymmetry of the pulse shape in Fig. 2 indicates
that a soliton is not a good first-order estimate
because a andy are important in this case.

Note that the characteristic width ! is deter-
mined solely by @ and v and it is smaller than,
but of comparable order to, the wavelength at
the maximum growth rate, i.e., 7=(20y/Ta /2
=~ 0,19(27/% .«). Furthermore, the amplitude of
the soliton is proportional to 8, so that the satur-

ation amplitude increases as the dispersive ef-
fect increases.

A wave with sufficiently small amplitude and
large width grows because the growth term au,
is more important than the damping term yu,,., .
for small wave numbers., Since the Korteweg-de
Vries soliton decreases its width with increasing
amplitude, the width of a growing wave decreases
and increases the relative effect of damping lead-
ing to a slowdown of the rate of amplitude in-
crease. Meanwhile, the dispersion can inhibit
mode coupling and result in saturation at higher
amplitudes for sufficient dispersion, which is
responsible for the fact that N, is proportional
to B. Therefore, N asymptotically approaches
the value N, for which the growth just balances
the damping and also the dispersion balances
the nonlinearity.

In conclusion, I emphasize that computer solu-
tions show the growth of an initial perturbation
followed by formations of a row of solitons for the
strongly dispersive case. Also to be emphasized
is that the existence of a dispersive effect can
bring about a kind of organization in the system
that exhibits a turbulentlike behavior if the effect
of dispersion is completely neglected, Further
detailed numerical results will be reported else-
where,
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