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The derivation of kinetic equations for the classical and quantum (Wigner) distribution
functions for a plasma with non-Abelian interactions is outlined. Particular emphasis is
put on the relation between the color structures in the classical and the quantum theories.
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The recent widespread interest in using high-
energy heavy-ion collisions as a means to create
a quark-gluon plasma, ' and thus to test the pre-
diction of a transition from a color-confining to
an unconfining (plasma) phase in QCD at high
temperature and/or density, "has focused on a
discussion of lepton-pair, photon, and strange-
particle spectra, "'which are supposed to con-
tain signals for a transient plasma phase. Usual-
ly such computations are performed on the basis
of the following assumptions: (i) The plasma
phase forms instantaneously as soon as the criti-
cal value for the energy density (around 1 GeV/
fm') is exceeded; (ii) local thermal and chemical
equilibrium are established extremely fast and
can be taken to persist at practically all times."

Both assumptions are not yet tested. In fact,
the expected lifetime for the plasma phase is
short; numbers in the literature for, e.g. , U+ U

collisions at c.m. energies of 20-50 GeV/nucleon
vary between 4 and 8 fm/&. ' ' Therefore, we sus-
pect that, contrary to assumption (ii), the plas-
ma phase spends a nonnegligible part of its life-
time trying to approach an equilibrium state.
The existence of such a preequilibrium phase
may change the predictions for measurable signa-
tures of the plasma phase. To check this, a
formalism for a dynamical, nonequilibrium de-
scription of the quark-gluon plamsa is required.
As far as I know, this does not yet exist, and its
formulation will be the subject of this Letter.

Before entering into an outline of the theory (a
detailed account will be published elsewhere' ),
I mention another so far neglected feature of the

!
quark-gluon plasma: Since color is no longer

confined to hadrons in this phase, macroscopic
(i.e. , with a length scale» 1 fm) color fluctua-
tions are possible. In order to be able to handle
such effects, the kinetic theory will consistently
treat all color degrees of freedom. Color fluc-
tuations introduce the concept of color conduc-
tivity, "' an important property of hadronic matter;
its coefficient in the plasma phase will, in princi-
ple, be calculable within the present formalism.

The presentation will be in two steps: (1) For
mulation of a classical kinetic theory and deriva-
tion of a classical chromohydrodynamics (de-
signed for practical applications); (2) its justifi-
cation through a quantum-mechanical treatment
using relativistic Wigner functions.

Classical theory. —In a first step we try to de-
scribe the quark-gluon plasma as a system of
classical colored particles and antiparticles
(quarks and antiquarks) interacting with each
other via a classical non-Abelian field&„'g)."o
We define a one-pa~.'icle distribution function
f(r;,P, Q) on "extended phase space" spanned by
space-time coordinates x", kinetic moment P",
and color vectors Q' [a =1, . . ., 8 for SU(3)].
Color has to be included into the definition of
phase space': Because of its ability to exchange
color with the non-Ab~. lian field under whose in-
fluence it is moving, the color charge of a classi-
cal colored particle, like its momentum, is a
continuously varying function of time. Q. rotates
in color space, with Q'Q, and d, &,Q'Q'Q' being
constants of motion. This is reflected in Wong's
equations of motion" for a classical colored par-
ticle in a Yang-Mills (YM) field, which can be
used' to derive a kinetic equation for the distribu-
tion function:

I 0"&~+ Q.F~.'b)P'sp" +f.~.P'&."4)Q'oq']f(r, 0, Q) =C[f,f ]R,f, Q), (la)

[p"a„-Q.F„,'(x)p'e, "+f„,p'A, '(r)Q'so']f(~, p, Q) =C[fj ](x,p, Q). (»)
f and f are the distribution functions for quarks and antiquarks, respectively. C and C are collision
terms, here for convenience chosen to be of the Boltzmann type' and hence depending only on f and f
themselves.

Equations (la) and (lb) turn into a genuine Vlasov-Boltzmann equation by requiring for the non-Abeli-
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an field the self-consistency condition

(D,~"').( ) =j.'( ), (2)

with j,"(x) from Eq. (4b), and D.,"-=&"&., -f.„A,"P).
From the kinetic equations (1) a set of macroscopic equations can be derived. From baryon-number

conservation we find

s V( ) =0 V~() f=-p~(j j-)dpdQ

Here the integral goes over the momentum and color sectors of phase space with the measure

(3)

(4)

dP=—29(p )05(p' m'-)d'p, dQ=5(Q'Q, —Q')&(d, |„Q'Q Q' —Q')d'Q.

[d'Q is the invariant group measure for the octet representation of SU(3).'] Color conservation yields

(D„j ).()=0; &. () = fp -Q.p j)dP-dQ.

Conservation of energy and momentum requires

spTMAT 4) 2p R)Fa R) spTYM R)q (5a)

(6b)

with
""R)-=fp "p'(f +f)dPd Q (5b)

being the energy-momentum tensor of the particles, and TqM" ' being the one for the non-Abelian field.
The set of equations (2)-(5a) form the framework of a classical, relativistic, colored hydrodynam-

ics' and are the relativistic generalization of the chromohydhodynamics recently proposed by Gibbons,
Holm, and Kupershmidt. '

For later use, note that the Vlasov-Boltzmann equations (1) are equivalent to an infinite hierarchy of
( —)

equations for the color moments of f, namely,

f~'(,p)= ff (,p,-Q)dQ; f .(&,p)=fQ.f (,p, Q)dQ,

etc. With the definition gg, p) =—f(r, p) + f (x, —p), and similarly for the higher moments, and with the
collision terms omitted, the hierarchy reads

p"&,r(,p) =p"Pu. '( )&p 'g.@,p), (6a)

p" I&„6, f.&.Ap'6-)]I:.(,p) =p"+~.'R)&p'a. o@,p),

p" [s,~..5,.-j;..5,.A, () -~..X...A. ( )]a,( p) =p"F, .'( )s, 'g...(,p), (6c)

etc. This concludes the presentation of the classical kinetic theory in this Letter, and we now turn to
a quantum-mechanical (@CD) treatment.

Quantum-mechanical treatment. The quantum—-mechanical analog of the one-particle distribution
function is generated by the following operator:

P(x,p) =(2v) 4fd've '~'":4'(@+Tv)P(exp[-iQ, f A„'(z)dz" ]].

P(exp[- ie. f„„„A'(~)«"]3+&—Y v): (7)

where Q, =-a, /2, and + solves the Dirac equation i y" [&„+iQ, A„'(x)]+(x) =m+(r). & is a matrix
operator with color indices A, & =1,2, 3 and spinor indices &,P. The path-ordered exponentials make
physical quantities (to be calculated as ensemble expectation values of gauge-covariant operators with
&) gauge covariant; hence, (7) is the gauge-invariant generalization of the Wigner operator usually
found in textbooks. " (&) from (7) is as close as one can get to a positive-definite distribution function
in quantum mechanics. " The macroscopic observables &„g), j„'(x), and 1'„,g), expressed through
+, take the following form:

&"R):(:+k)y"+4):)=fd p (Try"&k, p)) = fd pp"(Tr&g, p))+ spin effects, (6)

j."g) -=(:+g)y"0,+g):)= fd'p(Try" Q, &(x',p)) = fd'pp" ( rTQ. &g,p))+ spin effects, (9)

T MAp""g)—:(i/2)(:@(x)y"D"+ (x') —@g)D'"y"@(x):)

= fd'p p" (Tr y "&(x,p) ) = fd4p p"p '(Tr & g,p)) + spin effects.
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In these equations, spin effects have been isolated through a Gordon decomposition as terms involving
o„„and are henceforth neglected. " The quantities (8)-(10) obey the chromohydrodynamical equations
(3)-(5a). We see that everything comes out analogous to the classical theory, up to the facts that the
momentum integrals are not on mass shell, and that the color integrals are replaced by traces over
color indices. We will now focus on an understanding of these differences.

To this end we split & in the following way:

&6',P) =&'"'(,P) + +' 'R,P) + &' "(,P); &"R,P) = ~(+-P.)9(P')J R,P}, 'y'" &,P) = 9( -P')-&R, P)

The last term (attributed to the Zitterbewegung") is of no importance classically. " &(' and &( '

usually are peaked near the mass shell" and classically correspond to 9 (P,)&(P'- m')f(')(', P, Q} and

()(-P,)()(p'-m') f (x, -P, Q), respectively. We expect this correspondence to become explicit in a
semiclassical IP - 0) approximation.

Next we discuss the color structure of &(I);,p). (We here neglect the spin indices of &.) The color
matrix & g,P) may be expanded as

where

8

AB) x ~LBg +2 Z (Qa)AB gay (lla)

(11b)

P"&„g(l(;,P) =p "E„„'Q,P)e~ "g,g,p) + collision terms,

p"[a„o„-f.,A„"g)]g,g, P}P"E„„'&~"g(,»g, p) + collision terms.
1 A

Here the brackets in g(,» (x,p) mean symmetrization: g(,»-=~(Tr Q„Q,]&). The color algebra can be

used to express g („) in terms of g and g„and the system (12) closes.
The collision terms in (12) contain correlations involving the quantum field &A„'g) and higher mo-

mentum derivatives of &Q,P) (Ref. 7) [the latter again vanish in the limit I-0 (Ref. 16)]. They are
presently being worked out; once evaluated, they will allmv the computation of transport coefficients
for the plasma, leading, hopefully, . to a more intuitive understanding of its physical properties.

Instead of using the color algebra to close the system (12), one may derive transport equations for
the higher moments too. One finds

P "[8( ()-b~~ -f. boa&) (&) —~.,f~ uA) R)]g(.~) R P)

=P"&„,'(x)&~'g((.»,) Q, P) + collision terms,

(12a)

(12b)

(12c)

etc. Up to the only partial symmetrization of color indices, this hierarchy is formally identical to
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g-=Trc(&); g. -=Trc(Q, &).

Insertion into Eqs. (8)-(10) and comparison with (3)-(5) reveals the following correspondence between
the moments (11b) of the Wigner function and their classical counterparts:

g(,P)-b(P'- ')b(p, ) ff(,P, Q}~Q ~(-p,) ff (,-p, Q)dQ3;

g(,P)- (5P'- ')(()(p.) fQ.f(,P, Q)&Q+~(-P.) fQ.f V, -P, Q)dQ).

Thus, although gg, P) and g, (v, P) completely specify the Wigner function, their knowledge allows us to
determine only the two lowest color moments of the Q-dependent classical distribution function. The
reason is that quantum mechanically the higher moments [i.e., (Tr(Q, Q, &)), ete.] are related to g and

g, via the SU(3) algebra, whereas no such relations exist a Priori for the higher color moments of the
classical distribution function. Imposing them in the classical case would enforce the color algebra
also for the classical theory. This, however, is not in the spirit of the classical approach: Together
with the Vlasov equation we would simultaneously have to solve an infinite number of constraint equa-
tions, thus losing the simplicity of the classical formalism. The philosophy that I adopt instead will
become clear below.

We now derive a transport equation for the Wigner function in QCD." To reproduce the Vlasov limit
(incorporating the effect of a self-consistent non-Abelian field) we assume that the YM field develops
a nonvanishing expectation value: A„'(x) =&„'(r) + M„'(x). The equation for (F) can be split up as fol-

liess:
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the classical analog (6). Whereas in the quantum case the hierarchy is generated by the color algebra
(t»ough construction of higher moments from lower ones), in the classical case it is generated by the
non-Abelian term in (1). This demonstrates the importance of this term and shows that the Vlasov
equation (1) is the correct" (or at least most closely related to the quantum theory) c].assica] trans-
port equation for a non-Abelian plasma.

The analogy between the classical and the quantum transport equations for a non-Abelian plasma
demonstrated here allows for an implementation of quantum-mechanically calculated collision terms
in the classical kinetic theory. Furthermore, it provides a justification for applying the chromohydro-
dynamics (1)-(5) obtained in this way to the quark-gluon plasma in heavy-ion collisions.
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