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Are Three-Frequency Quasiyeriodic Orbits to Be Expected
in Typical Nonlinear Dynamical Systems' ?
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The current state of theoretical understanding related to the question posed in the title
is incomplete. 'This paper presents results of numerical experiments which are consis-
tent with a positive answer. 'These results also bear on the problem' of characterizing
possible routes to chaos in nonlinear dynamical systems.

PACS numbers: 05.40.+ j, 02.50.+ s

Landau proposed, as a possible mechanism for
the onset of turbulence, the successive destabil-
ization of fluid modes of incommensurate fre-
quency. According to this picture, as a stress
parameter of the system (e.g. , the Reynolds
number) is increased, successive discrete fre-
quencies appear in the Fourier power spectrum
of the fluid variables along with their integer
harmonic sum and difference combinations. The
system time dependence then appears to become
very complex (turbulent) when many frequencies
are present. This view was challenged in the
paper by Ruelle and Takens, ' who proposed that
truly chaotic time dependence can result after
only a few bifurcations. Furthermore, they offer-
ed a specific mechanism by which this might oc-
cur. The related subsequent paper of Newhouse,
Ruelle, and Takens' showed that, if one has a
system with a phase-space "flow" consisting of
three incommensurate frequencies, then there
exist arbitrarily small changes of the system
which convert the flow from a quasiperiodic,
three-frequency flow to one which is chaotic. '
One might naively conclude, on this basis, that
three-frequency flow was unlikely, since it can
be destroyed by small perturbations. On the
other hand, the small perturbations necessary
to make the flow chaotic may have to be very
delicately chosen and hence may be unlikely to
occur in practice. The mathematical proofs of
the existence of these perturbations' do not
give us a satisfactory answer to this problem.
In fact, in the proof of Ref. 2, the small per-
turbations necessary to create chaotic attractors
have small first and second derivatives but may
not necessarily also have small third and higher-
order derivatives. For physical applications,
however, we expect that smooth perturbations
(which do not have large third and higher-order
derivatives) are of most relevance (it is only
such perturbations that we shall be concerned
with in this paper). Thus, theoretical understand-

ing related to the question of whether one should
typically expect to observe three-frequency quasi
periodicity in experiments is currently very in-
complete. In the present paper we attempt a
series of numerical experiments with a view
toward making some progress in clarifying this
situation. We find that, for the definite system
studied, three-frequency quasiperiodicity can
occur and is, in fact, fairly common. This is
analogous to the rigorous result of Arnol'd, who
showed that two-frequency quasiperiodicity is
stable to small changes in the same (measure
theoretic) sense as our numerical results sug-
gest three-frequency quasiperiodicity to be.~

These results also bear on the subject of
"routes to chaos" in typical dynamical systems.
By a route to chaos we mean an answer to the
following question: Given a dynamical system
with only nonchaotic, stable, time-asymptotic
dynamical states, how do chaotic attractors arise
as some parameter of the system is varied& Sev-
eral ways (routes) by which this can occur have
now been well documented. These include in-
finite period-doubling cascades, ' intermittency, '
and crises. ' The existence of the second and
third routes confirms, in a general way, Ruelle
and Takens's proposal that chaos can arise after
only a few bifurcations. However, the specific
mechanism by which they speculated this might
happen' remains in doubt. In particular, on the
basis of Refs. 1 and 2, another route to chaos
is also sometimes thought to be possible. "
Namely, if a flow arises with two-frequency
quasiperiodicity, the destabilization of a third
incommensurate frequency is supposed instantly
to create a chaotic flow. Our results suggest
that this scenario is unlikely in typical physical
situations. '

Saying thats(t) is quasiperiodic with three fre-
quencies, f„fa, and f, means thats(t) has the
form x(t) =F(f,t,fat, f,t), where E(u, v, co) is
periodic with period l in (u, v, ae). [Expressing
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E as a Fourier series in (u, v, w ), we then see
that the frequency power spectrum of x(t) is
composed entirely of discrete spectral compo-
nents at frequencies pf, +Q2+rf, where p, q,
and r are integers. ] Choice of a Poincare sur-
face of section so that the process is examined at
times t=n/f „with n an integer, yields x(n/f, )

=P(0, n&u„n~, ), where ~,=f,/f, and ~, =f,/f, ,
The physical system will actually have many de-
pendent variables, x,(t), x,(t), . . . , all with the
same type of three-frequency quasiperiodic de-
pendence, x, (n/f, ) = E, (0, n~„n&u, ). The trajec-
tories hit the Poincard surface of section only at
points of the form (x„x„.. . ) = (E1(0, 8, y), E,(0,
9, y), . . . ) where 0 - 9 - 1 and 0 -.q - 1. Thus the
attractor in the surface of section is a two-dimen-
sional torus coordinatized by 0 and y. For suc-
cessive returns to the surface of section, 6I and

y change by the rule

0„+~ = [ 0„+(d~jmodl,

q „„=[(p„+(u,]modl.

(la)

The flow is truly three frequency if ~» ~» and
1 are incommensurate numbers [i.e., integers
(p, q, r) do not exist for which par, +q&u, +r =0].
In this case Eqs. (1) generate an orbit which is
ergodic on the L9-y torus. Now we perturb Eqs.
(1) as follows:

0„„=[6„+or,+ eP1(8„, cp„)] modl,

y„„=[ y„+(u, + eP,(8„, y„)]mod 1,
(2a)

where the P, , are periodic in 8 and p (since the
map is on a torus), and we take P, , -O(1). If
Eqs. (2) have three-frequency quasiperiodic
orbits, then, by definition, there exists a non-
linear change of variables, (6, y) —(6I', y '),
such that the new variables satisfy Eqs. (1) with
~, and ~, replaced by p, and p„where p, and p,
are the winding numbers generated by (2); viz. ,
p, = lim„(e„—8,)/n; p, =—lim„(y„—y, )/n;
and for the purposes of these definitions of p, ,
the modl should be deleted from (2) in calculat-
ing 61„and y„. On the other hand, according to
the theorem of Ref. 2, there exist arbitrarily
small (not necessarily smooth) perturbations,
(eP„eP,), such that the attracting orbits gen-
erated by (2) are chaotic. Whether this occurs
for typical smooth P, , is the question we wish
to address. We find, in fact, that it does not
occur for typical smooth P. .. and, furthermore,
it does not even necessarily occur for large per-
turbations [i.e., eP1,- O(1)J.

Making use of the periodicity of P, , in (0, y),
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we express it as a Fourier sum af terms A„,sin[2
xv(r9+sp+B„,)], with integer (r, s) the summa-
tion indices. We pick (somewhat arbitrarily)
a convenient form of P, , by retaining only (r, s)
=(0, 1), (1,0), (1,1), and (1, -1). We then choose
the amplitudes and phases, A.„, and B„„using a
random-number generator. Thus, in some sense,
we are picking the P, , at random. All the re-
sults reported here are for one particular such
choice. We emphasize, however, that other
choices using other (r, s) combinations have been
found to give similar results. For our coeffi-
cient choice we form J, the Jacobian determinant
of the map, Eqs. (2). Note that this determinant
depends on e, 0, and cp but not on co, , The map
(2) will be invertible if Jw0 everywhere in 0 ((8,
y) -1. For the A and B coefficients chosen, this
gives ~ & e„where e, —= 0.673. For ~ & c, the
map is noninvertible. Three-frequency quasi-
periodicity is possible only if e ( e„since other-
wise a transformation of variables to Eqs. (1)
(which are invertible) would be impossible.

There are four possible types of attractors for
the map Eqs. (2). These are (i) three-frequency
quasiperiodic, (ii) two-frequency quasiperiodic,
(iii) periodic (one frequency), and (iv) chaotic.
We have found that, for our purposes, the most
convenient method of numerically distinguishing
between these four classes is by calculating their
Lyapunov exponents, which we denote by h, and
h„with the convention h, -h, . For a three-fre-
quency quasiperiodic orbit, h, =h, =0, since then
(2) may be transformed to (1) for which the Za-
cobian matrix is the identity matrix. For two-
frequency quasiperiodic attractors, p„p2, and
I are commensurate, the attractor is a closed
curve winding around the (9, y) torus, and the
Lyapunov exponents satisfy h, =0, h, &0. In this
case, h, &0 corresponds to the fact that the closed
curve is attracting, while h, =0 corresponds to
the fact that motion along this curve is two-fre-
quency quasiperiodic [i.e., a proper choice of
variables can put the governing equation for mo-
tion along the attracting curve in the form of Eq.
(2a) ]. For an attracting N-periodic orbit, (H„y1)
-(8 y) —~ ~ ~ -(6„y )-(& q ) — p and p
are both rational, and the Lyapunov exponents
are both negative, h, , ( 0. For a chaotic at-
tractor Ay) 0. This condition may be taken as a
definition of chaos, since it implies exponential
growth of the separation between nearby orbit
trajectories and hence sensitive dependence on
initial conditions.

The Lyapunov-exponent characteristics of the
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TABLE I. Lyapunov-number characterization of at-
tractors and numerical test criteria.

TABLE II. Frequency of observation of different
types of attractor for 256 random choices of (~~, ~2)
for each of three values of e/e

Type of
attractor

Three-frequency
quasiperlodlc

Two-frequency
quasiperiodic

Periodic
Chaotic

Lyapunov
characterization

hg ——hg -—0

A~=0, h2&0

her&0, k~&0
Q& &0

Numerical test
criteria

% i2+a, ') '/' &1O-'

2) i/2 &16-4

jg, &-10-4
h.

&
&+ 10 4

Type of
attractor

Three-frequency
quas iperlod lc

Two-frequency
quasiperiodic

Periodic
Chaotic

E/e~ = II

16%

e/e~ = f

38%

11%
7%

e/e =8c

0%

31%
36%

various types of attractor discussed above are
summarized in the second column of Table I. On
the basis of these properties we have devised a
test which we apply to Eqs. (2) with our random
choice of the coefficients. Table II shows a sum-
mary of one set of results for three different
values of e, namely, a/e, =~8, ~4, and ~8. These
results were obtained as follows. For each value
of e, 256 pairs of ~, and ~, were each chosen
randomly with uniform distribution in the interval
from 0 to 1. For each (~„o,) the map was iter-
ated 10' times and It, and ft, calculated. (The
same initial condition for 8 and y was used for
all cases. ) Note that, since the number of iter-
ates is finite, the calculated Lyapunov exponents
are only approximations to the true Lyapunov
exponents. I et h, and I, denote our calculated
estimates of k, and h, . If (5,'+Ii, ')' ' &10 ', we
judge the orbit to be three-frequency quasiperiod-
ic; if (h, '+h, ') & 10 ' but Ih, I

&10 ', we judge
the orbit to be two-frequency quasiperiodic; if
h, - h, - -10 ', we judge the orbit to be periodic;
and if h, -10, we judge the orbit to the chaotic.
These criteria are summarized in the third col-
umn of Table I. Table II shows the fraction of
the orbits of each class for each value of ~. Thus,
three-frequency quasiperiodic orbits were judged
to occur for 82% of the choices of (&u„a~,) for the
case e/e, =+ for 44/o of the choices for c/e, =~4

and for none of the choices for e/e, =~8. (As
previously mentioned, it is known on theoretical
grounds that three-frequency quasiperiodicity
cannot occur for e &c,.) Furthermore, we note
that after three-frequency quasiperiodicity, the
most common occurrence for e/e, =~8 and ~~ is
two-frequency quasiperiodicity, with the occur-
rence of periodic, and especially chaotic, orbits
being comparatively rare in these cases. As a
check to verify that (ii,'+li, ')' ' & 10 ' is a reason-
able criterion for three-frequency quasiperiodic-
ity, Fig. 1 shows a logarithmic plot of (h, '+E,')'/'
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FIG. 1. Plot of (k& +52) vs the number of itera-
tions (N) on a logarithmic scale for one of the cases
in Table II which were judged to be three-frequency
quasiperiodic. e/e =f, ~&=0.42454496517641, ~2
= 0.126 984 126 984 13.
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vs N, where N is the number of iterates used in
calculating h, and h„ for a case judged to be
three -frequency quasiperiodic. The decrease in
the envelope maximum of (h, '+Ii, ')' ' as N ' is
evident over four decades of variation.

The results reported here suggest that if arbi-
trarily small smooth perturbations exist which
destroy three-frequency quasiperiodicity, then
they must have to be very delicately chosen and
are thus unlikely to occur in practice. In particu-
lar, we believe that for a fixed typical choice of

P, and P„ the measure of (ai„ai,) which yields
chaos approaches zero as ~ —0. In conclusion,
we have shown that the addition of smooth non-
linear perturbations does not typically cause the
occurrence of three-frequency quasiperiodicity
to cease. Furthermore, three-frequency quasi-
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periodicity persists and is prevalent even when
large (e.g. , ~/e, =, ) nonlinear terms are intro-
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