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Coherence in Chaos and Caviton Turbulence
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The chaotic nature of caviton turbulence" is studied in one-dimensional, many-Fourier-
mode numerical simulations of the driven dissipative Zakharov equations. Above the mod-
ulational instability threshold the system evolves into a variety of stable patterns of cavi-
tons which become chaotic for stronger driving. The cavitons rexnain coherent for times
long compared to the shortest Lyapunov time.

PACS numbers: 02.50.+s, 03.40.Kf, 52.35.Ra

=-k'Q» E-» *(f)E»-» (f) (2)-

In this Letter we report on numerical studies
in one spatial dimension of a many-mode Fourier
representation of the nonlinear partial differen-
tial equations known as the Zakharov equations. '
These equations describe much of the interesting
physics of the nonlinear interactions of high-fre-
quency longitudinal electric fields and low-fre-
quency ion-density fluctuations in a nearly col-
lisionless plasma. These studies demonstrate
the coexistence of coherent spatial structures—cavitons and temporal chaos. The level of
chaos is measured by the largest positive Lya-
punov exponent; the lifetime of the cavitons den-
sity cavities with trapped electrostatic fields —is
observed to be long compared to the Lyapunov
time. The behavior near the chaotic threshold
depends sensitively on the method of driving and
on parameters such as the length of the system;
at least in the threshold regime the cavitons do
not evolve independently.

There have been a number of many-mode nu-
merical simulations of the Zakharov equations'
but to our knowledge this is the first quantitative
study of the chaotic nature of "caviton turbulence. "
All of the interesting nonlinear phenomena are
observed to occur above the linear threshold for
modulational instability of the system driven by
the long-wavelength modes. These phenomena
include hysteresis effects with stationary solu-
tions (fixed points), limit cycles, two-frequency
behavior, and transitions to chaos. '

The Zakharov equations in dimensionless form
in Fourier representations are'

~ fe, + v. (k)-k')E, (t)=g„,~„,E, „.+S,(f), (1)

[s, '+ 2v, (k)8, + k']n»(t)

supplemented by the complex conjugated Eq. (1)
for E»*(t). These equations are a useful model
of Langmuir turbulence and are discussed else-
where. ' Here E»(t) is the slowly varying enve-
lope of the electrostatic field oscillation at the
background plasma frequency and n»(t) is the
Fourier component of the density fluctuation in-
duced by the ponderomotive force which is the
right-hand side of Eq. (2). (We have n», =0.)
The dissipation rates v, (k) and v, (k) represent
the coupling to the suppressed particle degrees
of freedom. We consider only cases in which we
are guaranteed the contraction of volumes in so-
lution space.

Equations (1) and (2) were numerically solved
by a split-time-step spectral method in which
linear terms are advanced in Fourier space and
nonlinear terms in real space. Periodic bound-
ary conditions in a box of length L are imposed
and from 64 to 1024 Fourier modes were used to
ensure adequate resolution of spatial structures.
Tests for spatial and temporal resolution were
employed, and the dependence on box size was
studied.

Numerical experiments were carried out for
three methods of driving or energy injection:

(i) Coherent source drive: S»(t) = v, W,'" for
~k) ~ k~, ("dr" for "drive") and S„=O for ~k( &k~, .

(ii) Coherent beam drive: v, (k) = —vz, for ~k~- k~, and v, (k) = v, = constant for
~ k~ &ka, .

(iii) Noise source drive: S»(t) = v, W, '"$»(t) for .

~k~ - k~, and S„=O for (k~ &ka„where the g, (t) are
delta correlated complex white noise sources of
unit rms amplitude.

The measure of chaos in our work will be the
Lyapunov exponent which measures the exponen-
tial rate of separation of two solutions with near-
by initial conditions. Formally the largest Lya-
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vs total energy S' for
several methods of energy injection: crosses, noise
driven, and plusses, beam driven, both with five driv-
en modes (kd, =0.2); circles, coherent source drive
with one driven mode. In all cases v, =0.1, v; =O.lk.
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FIG. 1. Contours of equal IE(x, t) P vs x and t for the
case of a five-mode {kd, =0.2), coherent beam drive
[case (ii)], vd, = -0.025, re=0.05, p; =0.05k, and L
=64, TV =0.13. The average time spacing between peaks
in the caviton "mountain chains" is approximately the
Lyapunov timeL

&
~.

punov exponent is given by

L, =lim lim (t 'In[D(t)/D(0)]I,
g ~ D(o)~o

where D(t) is the norm of the difference between
two solutions: i.e. , D'(t) =g„D,'(t), where D,'(t),
the difference spectrum, is the sum of the squares
of the absolute values of these differences in E„
n~, and the conjugate variable u~ = —k 'n„.

When the variables E(x,t) and n(x, t) evolve
from almost flat initial conditions, typically the
most modulationally unstable mode (tt —= W"')
evolves into a set of localized structures, the
cavitons. Here 8' is the total electrostatic ener-
gy per unit length, W =Q JIE,(t)~I'=fdx(E(xt)~I'/L.
In Fig. 1 we show this development for an exam-
ple of case (ii). An x, t plot of the contours of
equal ~E(x, t) ' is given which shows the persis-
tence of the caviton "trajectories" over times
long compared to the Lyapunov time. The ampli-
tudes of these cavitons oscillate up and down in
time in a random manner; the spacing between
peaks is roughly the Lyapunov time, L, '.

In Fig. 2 we summarize results for the Lya-
punov exponents L, vs W', where the bar denotes
a time average, for various methods of driving
and with fixed background dissipation. The cavi-
ton lifetime is obtained from contour plots such

as Fig. 1 and measurement of the length (in time)
of identifiable "caviton mountain chains. " A ma-
jor result of this work is that the cavitons can
persist much longer than the Lyapunov time —v„,
& L y && 1, indicating the coexistence of spatial co-
herence and temporal chaos. The largest Lyapu-
nov exponent itself is not a useful measure of the
coherence time of the cavitons.

A finite threshold for chaos has been observed
for both the coherent-source and noise-source
driven cases (see Fig. 2). We have only an in-
complete picture of this regime at present; we
will here present some results for the case of a
single-mode coherent drive [case (i) with k~, =0].
For drive strengths W, below the linear modula-
tional instability threshold W, (MI) = v, for k = v,"',
a trivial fixed point (FP) or stationary solution is
observed with ~E„~ =W, '~'II„, and n„=0. Above
this threshold we observe complicated hysteresis
effects. Among the possible states for W, &W, (MI)
is bifurcation to another nontrivial FP with sta-
tionary, spatially periodic patterns and charac-
terized by zero momentum, supported by only a
few Fourier modes. In this stationary case n is
adiabatically related to IE~; n= —~EI . For larg-
er W, we observe a stable limit cycle (LC); at
W, =0.145, W(t) oscillates about a mean value of
0.104 with a frequency of 0.50 in our dimension-
less units [multiply by 3 Q, /m, )~~, to obtain phys-
ical units]. The contour plots of [E(x,t) I' and «(x, t)
are shown in Figs. 3(a) and 3(b). The overall mo-
tion appears as a modulation moving through the
cavitons with a speed of v = 0.94 (times the ion
sound speed). The spacing in time between re-
peated structures in ~EI' agrees with the limit
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many-mode system self-consistently determines
which modes are excited.

In Fig. 4(a) ln[D(t)] and W» o
= ~EO(t) ~' are dis-

played for a coherent beam drive [case (ii)] where
Ad, =0. This example illustrates a connection be-
tween the traditional concept of the genesis of
turbulence by instabilities (in this case the modu-
lational instability), and the more recent concept
of stochastic instability. It appears that the local
(in time) lyapunov exponent, L,(t)=-D(t)/D(t), can
be identified with either the growth rate of the
beam unstable mode, or a modulationally unsta-
ble mode k, for the local value of W„,. The
modulational growth rate does not appear in L,(t)
until W~ =—W„,. A related analysis of Ly can be
obtained from an average of D~(t), the difference
spectrum, ' which shows peaks at k =0 and k . For
example, in the interval 0» t ~ 320, the slope of
the curve in Fig. 4(a) is about 0.004, correspond-
ing to the beam unstable mode at k = 0, while for
320 &t & 350, TV„,=—0.5 and the modulational in-
stability growth rate at k =0.5 is given by k[2W„,
—k']' ' —v, (k) =0.33, which is close to the meas-
ured slope, 0.30 [an inspection of data not pre-
sented here indicates that E(k =0.5) was rapidly
growing in this time interval]. It is the nonlin-
earity of the dynamics which allows for the "turn-
ing on and off" of the two types of instabilities,
and determines the time-average stochastic in-
stability the leading Lyapunov exponent. This
process also appears to occur for more strongly
driven cases in which these instabilities act to
produce local bursts of cavitons which occur
throughout the system and produce a less inter-
mittent time signature for box averaged quanti-
ties.

We have shown that the driven, damped Zak-
harov equations in one dimension have solutions
consisting of regular patterns of cavitons which
undergo transitions to temporally chaotic behav-
ior with increasing driving. In the chaotic regime
the cavitons have coherence times long compared
to the shortest I yapunov time. A theoretical un-
derstanding of these phenomena should have im-
plications for other physical systems which in-
volve the coexistence of coherent structures and
chaos.
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