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Observation of High-Field Superconductivity of a Strongly Interacting Fermi Liquid in U6Fe
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Measurements of the temperature dependences of the upper critical field 0,2 and heat
capacity C~ of UGPe are reported. H, 2 increases very rapidly for a low-transition-tem-
perature (T~ =3.8 K) superconductor, reach&&g II,&

=64 kate at T =1.95 K. Cp data indicate
that UGPe is a strorg-coupled bulk superconductor and an exchange-enhanced paramagnet
with an electronic coefficient y= 145+ 10 mJ/mole ~ K2. U&Fe constitutes a metallurgically
clean and conclusive example of the occurrence of high-field superconductivity in a strong-
ly interacting Fermi liquid.

PACS numbers: 74.30.Ek, 74.60.Kc, 74.70.Lp, 75.20.En

Superconductivity and magnetism are generally
acknowledged to be mutually exclusive phenomena.
In spite of this trend, superconductivity has re-
cently been detected in two strongly magnetic ma-
terials: CeCu, Si, (Ref. 1) and Y,Co, ("Y,Co,").'
Unfortunately, metallurgical difficulties have so
far prevented clear interpretations of these ex-

perimentss.

'
We report our observations of high-field super-

conductivity and exchange-enhanced paramagne-
tism in the compound U, Fe, and present conclu-
sive evidence that these phenomena occur within
a strongly interacting Fermi liquid. U,Fe is pres-
ently unique in that it is clearly a metallurgically
clean, bulk superconductor with very reproducible
properties, and does not exhibit localized mag-
netic moment behavior as does the "Kondo lat-
tice, "CeCu, Si,.' ' Further, we find that the re-
normalization of the Fermi-liquid parameters of
U, Fe is much stronger, and the T, =3.8 K much
smaller, than appropriate to high-field transition-
metal compounds.

Only a handful of superconducting binary U com-
pounds (UCo and U,X, X=Mn, Fe, Co, Ni) are
presently known. " These materials are among
the few superconducting compounds of the mag-
netic M elements Mn through Ni, and recent
measurements' have shown that U, Fe and U,Co
have strong, weakly temperature-dependent par-
amagnetic susceptibilities comparable with that
of the nonsuperconducting, nearly ferromagnetic
element, Pd. The body-centered tetragonal (D2, )
crystal structure' of U,X is unique to U, Np, and
Pu compounds with magnetic 3d elements. ' These
intriguing observations suggest that high-mass,
itinerant 5f electrons play a significant role in
the physical properties of these materials.

An ll-g ingot of composition U,~Fe was pre-
pared by the arc melting of high-purity starting
materials in an Ar atmosphere followed by an
annealing procedure which is described else-
where. " Samples were spark cut from the an-
nealed ingot for C~ and H„measurements and
another portion of the original material was
analyzed by x-ray diffraction and found to be
single phase. The temperature dependence of
the upper critical field was determined resitive-
ly by varying of the sample temperature at fixed
values of field H. No transition hysteresis was
observed when temperature was cycled through
T,(H). Specific heat was measured by use of a
standard semiadiabatic, heat-pulse method.

Our results for H„vs Tare given in Fig. l.
H„ increases linearly with decreasing tempera-
ture over the entire experimental range 2 g Ts 4
K and 0 « Hs 65 kOe. The magnitude of H, s(T —0)
approaches 100 hoe, a value tohich is anomalous
ly large for a compound toith T, s4 K. The slope
—(dH„/dT)r = 34.2 kOe/K rivals similar data for
the extreme Ligh-field &15 and Chevrel-phase
superconductors for which

20 kOe/K s —(dH„/dT)r s 80 kOe/K

and T, &10 K.
Zero-field data for C~ vs T were obtained over

the range 1 s T c 20 K, and our results for C~/T
vs T' are shown in Fig. 2(a). We note that the
low-temperature C~ of U,Fe is roughly one order
of magnitude larger than that of typical transition-
metal compounds (including A15's) over a similar
temperature range. C~ data obtained in an applied
field H=2 kOe yielded —(dH„/dT)r =36.4 kOe/K,
in good agreement with the B„measurements.

The unusual negative curvature of C~/T vs T'
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FIG. l. Upper critical magnetic field 0,2 vs temper-
ature T for U6Fe. The line is a guide to the eye, and
has the slope shown.
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for T & T, =3.70 K has been observed previously
for the highest-T, A15 (Refs. 11 and 12) and Chev-
rel-phase" compounds where it has been attrib-
uted to low-energy features in the phonon density
of states. A plot of C~/T vs T shown in Fig. 2(b)
further illustrates this remarkable behavior.

We have fitted our normal-state data over lim-
ited temperature ranges using either a modified
Debye expression

C„~ = 'y ~ T + p ~ T + lI ~ T

or an alternative expression

C„,= y, T+ (),T'+ P, T',

which reflects the dominant T' behavior of C~ vs
T shown in Fig. 2(b) (see Table I). We are unable
to fit our entire data set for the normal-state
heat capacity C„by a low-power polynomial in T
and retain consistency with entropy constraints
which require y & 100 mJ/mole K'. The coef-
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ficients of fit No. 1 are in very good agreement
with the unpublished results of Maita, "and our
large y value is corroborated by two additional
observations.

(1) The BCS theory predicts the magnitude of

T (K)

FIG. 2. (a) Zero applied magnetic field heat capacity
C~ divided by temperature T vs T2 for U6Fe. The thick
solid line represents data which were too dense to plot,
and the thin solid line represents the fit No. 1 of data
from 4.2&T & 10.2 K, as described in the text. Note
the superconducting tr~~~ition anomaly at T, =3.70 K.
(b) Zero applied magnetic field Cp /T vs T for the same
U6Fe data shown in (a) above. The thin solid line rep-
resents the fit No. 2 data from 4.2&T &7.3 K, as de-
scribed in the text.

TABLE I. Fitting parameters for the normal-state specific heat of UGFe.

Fit No. 1 4.2&T & 10.2 K
Fit No. 2 4.2&T &7.2 K

155.2
136.9 17.88

8.954
5.372

7 6 p
(mJ/mole K ) (mJ/mole K ) (mJ/mole K4) (mJ/mole ~ K')

—2.907x10 2 115
136

1.00
1.00

'Debye temperature dependence deduced from p coefficient.
"Ratio of the normal to superconducting state entropies at T, (thermodynamics demands that this ratio equal

1.00).
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the jump AC in heat capacity at T, :
~c=- c„-c, =(1.43)~T,. (3)

We estimate LC=1.2 J/mole K, implying y s 230
mJ/mole K', according to Eq. (3). The actual y
may be somewhat smaller because of strong-
coupling effects; our y, =155 mJ/mole K' leads
to 8 C/y, T, = 2.1, a value typical of a strong-
coupled superconductor.

(2) (dB„/dT)r has been successfully corre-
lated" with y and the electrical resistivity p of
Chevrel-phase compounds by use of the dirty-
limit formula

(dH„/dT) =(44.4)yp.

Using our results

-dh„/dT =34.2 kOe/K,

y, =1.855 x 10' ergs/cm' K',

(4)

(5)

where N& and N„are the renormalized densities
of states determined from specific-heat and sus-
ceptibility measurements, respectively, LL(. B is
the Bohr magneton, k~ is Boltzmann's constant,
and A. is the electron-phonon interaction param-
eter obtained from the McMillan equation for
T,." Using g = 2.ox 10 ' cm'/g and performing
standard corrections for core and band diamag-
netism, me obtain 5 =4, indicating that magnetic

we deduce p =4.2&&10 ' Q cm in very good agree-
ment with our measured p(T = 4 K) = 5.0 x 10 ' I)
cm and other published results for U, Fe."

The above two observations confirm that the
superconductivity of U~Ee is a bulk phenomenon
Mhich occurs within a strongly interacting Fermi
liquid. Indeed, our y =155 mJ/mole K' for U, Fe
is comparable with values of 142 and 171 mJ/
mole .K' reported for the nonsuperconducting
spin-fluctuation compounds, UAl, (Ref. 17) and
USn„" respectively. The magnitude of the low-
temperature magnetic susceptibility'

y =2 x 10 ' cms/g =4x 10 ' cm~/mole atom

for U, Fe is approximately five times less than
the more temperature-dependent susceptibilities
of UAl, (Ref. 17) and USn„" and about one-half
as large as that of Pd. ' lt is therefore of inter-
est to estimate the degree of exchange enhance-
ment of the electronic spin susceptibility g, = yl.g
(g~=Pauli spin susceptibility) for U, Fe.

8 can be derived from the relation

correlations are significant in U, Fe.
In view of the apparent strong paramagnetism

of U, Fe, we have also analyzed our data within
a paramagnon model" "in which A. -A, + A,, in Eq.
(5) and A., is a paramagnon interaction parameter.
We replace the McMillan formula by"

co, (1+ A. + A., )
1.2 (p.*+A., —1) (6)

Using a Coulomb interaction parameter p* =0.13
and the experimental ratio Nz/N„=0. 5, we con-
clude that 5 sSs10 for 0.4sA., a1.5, correspond-
ing to 0.9 s A, a 2.1 (these estimates are consistent
with a wide range of characteristic phonon energy,
40 ~ ru, ~ 240 K).

Strong renormalizations of the electronic heat
capacity and magnetic susceptibility have impor-
tant implications for the critical-field behavior
of U, Fe. Orlando and Beasley24 have shown that
II„data of A15 compounds are best understood
by taking into account the full renormalization of
the paramagnetic limiting field B~ and the effects
of paramagnon suppression of superconductivity
without invoking unreasonably large spin-orbit
scattering rates. Accordingly, we assume a sec-
ond-order transition in the dirty limit where

e~(0) =a "'(o)(1+z+ z, )/8

=(18.6 kOe/K)T, N /N„. (7)

Our data yield H~(0) =34 kOe «64 kOe, the larg-
est value of B„observed in our experiments,
implying that the inclusion of a large amount of
spin-orbit scattering may yet be necessary to
explain our results. Such a possibility is of im-
portance in view of existing difficulties in the-
OrieS Of H 24 25
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Note added. —After submission of this paper for
publication, we have become aware of similar re-
sults of H. R. Ott et al. for the compound UBeJ3."
Although UBe» exhibits Curie-Weiss behavior
for y at T~100 K, the scaling relations of Eqs.
(3) and (4) above are still satisfied, suggesting
that UBe» is an even more strongly interacting
Fermi liquid with a bandwidth roughly one-tenth
that of U,Fe. Our results and those of Qtt et al.
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demonstrate that a model of "heavy fermion"
superconductivity can be applied to even nearly
ferromagnetic materials, and over at least a
three-order-of-magnitude range of bandwidth.
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