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Inverse Scattering of First-Order Systems in the Plane Related
to Nonlinear Multidimensional Equations
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A method for solving the inverse problem of certain hyperbolic as well as elliptic sys-
tems of n equations in the plane is given. This result can be used to linearize the initial-
value problem of several physically significant nonlinear evolution equations in two spa-
tial and one temporal dimension.
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It is well known' that the inverse problem of
the Schrodinger eigenvalue equation has been
used to linearize the initial-value problem of the
Korteweg-de Vries (KdV) equation. ' A similar
role has been played by the so-called Ablowitz-
Kaup-Newell-Segur (AKNS)' eigenvalue problem
(a system of two equations) in connection with
several physically important equations, e.g. , the
sine-Gordon, the nonlinear Schrodinger, the
modified KdV, etc. The generalization of the
AKNS problem to systems of n equations, which
we call nxn AKNS, is also related to physical
equations, e.g. , the n-wave interaction. ~ The in-
verse problem of the n &n AKNS has been recent-
ly solved by Beals and Coifman. '

It has been further establishecf" that certain
two-spatial-dimensional analogs of the above
eigenvalue problems are also related to physical-
ly interesting evolution equations. These equa-
tions are (2+1)-dimension, i.e. , two space and
one time, analogs of the nonlinear equations men-
tioned above. However, the question of finding a
suitable method, such as the inverse scattering
transform (IST), for solving the initial-value
problem of these and other equations in 2+1 di-
mensions remained open for a rather long time.
In this regard I mention that some interesting
results had been obtained in connection with the

Kadomtsev-Petviashvili (KP) equation' (a 2+ 1
analog of the KdV equation) and with the three-
wave interaction in 2+ 1 dimensions. ' However,
it was not clear from this work how an IST for-
malism for problems in 2+1 dimensions could be
developed.

The Schrodinger eigenvalue equation has been
generalized to two dimensions in two different
forms related to KP I and KP II (both of these
equations arise naturally in various physical con-
texts'). The inverse problem corresponding to
KP I has recently been linearized' with use of a
Riemann- Hilbert boundary-value problem. Simi-
larly a so-called ~" problem has been used to
linearize KP II."

In this Letter I present a method for solving the
inverse problem of a rather general system of n

equations in the plane. Furthermore I show how

this result can be used to linearize the initial-
value problem of several physically important
equations. In particular in sections. (a) and (b)
of this Letter I consider the two-dimensional gen-
erlization of the n &n. AKNS problem proposed in
Ref. 4-

Bj +qg+ Jg, . .

In Eq. (I) & and J are n &n constant diagonal
matrices and q(x, y) is an n xn off-diagonal matrix
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containing the potentials (or field variables). I
assume that q(x,y)-0 sufficiently fast for large
x,y. I investigate both the hyperbolic (i.e. , J
real) as well as the elliptic (i.e. , J imaginary)
versions of (1). The hyperbolic and elliptic cases
are linearized with the aid of a Riemann-Hilbert
and a "~" problem, respectively. In the elliptic
ease I assume that a certain linear integral equa-
tion characterizing suitable Jost eigenfunctions
has no homogeneous solutions. If such homogene-
ous solutions exist they give rise to lumps, i.e. ,
decaying solitons in 2+ 1 dimensions (the situa-
tion is similar to that found in Benjamin-Qno"
and KP I'). In the latter case the formalism pre
sented here must be appropriately modified to in-
corporate these homogeneous modes. This, as
well as various rigorous aspects of this work,
will be presented in the future" (for the hyper-
bolic case we do not expect lumps}. In section (c)
I indicate how the results of sections (a) and (b)
can be used to solve the initial-value problem of
certain nonlinear equations. Concrete results
are given for the n -wave interaction in 2 + 1 di-
mensions and for variants of the Davey-Stewart-
son (DS) equation. " The DS equation is a 2+1

!

generalization of the nonlinear Schrodinger equa-

tion and arises generically in physical contexts
(its various forms, for the case of water waves,
are related to the existence or nonexistence of
surface tension'). The modified KP equation,
which is also contained in (1), can be treated in
an exactly similar way.

(a) I first consider the inverse problem asso-
ciated with the hyperbolic system:

p„=ikJp + qp+ Jp„Jf—= Jf —fJ, (2)

where p is an nth-order matrix, ~ is a constant
real diagonal matrix with elements J, & J, .. .&4„,
and q(x,y) is an nth-order off-diagonal matrix
containing the potentials q;, (x,y). I assume that

q„(x, y) -0 rapidly enough for large x, y. Equa-
tion (2) is obtained from the well-known' equation
(1) by taking B =0 (this is without loss of general-
ity) and using P= pexp[ik(Jx+y)]. Equation (2}
with s/ay=0 has been investigated in Ref. 5. Let
n, p, , m, p, and n p. denote the diagonal, strictly
upper diagonal, and strictly lower diagonal parts
of the matrix p.. A solution of (2), bounded for
all values of k=k~+ ik, and tending to the unit
matrix I as k- ~, is given by tL(x, y, k) = t '(x, y,
k) for k, ~ 0, du(x, y, k) = p, (x, y, k) for k, ~0,
where p'(x, y, k) satisfy the following linear in-
tegral equations:

where the linear operator E is defined by

[Ef(~ ) ](x —&,y ) —= f „dp f „dm exp[im (x —()J + i m (y —q) ]f(q) =ff y + (x —()J],

(4)

In Eq. (4) the scattering data f(t, k) satisfy

f(t, k) —f „dm T+(t,m)f(m, k) =T, (t,k) —1' (l, k); t, k real,

and f [y+ (x —$)J] denotes the matrix obtained from f(x) by evaluating its tth row at y+ (x —g)J, . Fur-
thermore from the definition of J it follows that exp(J)f =exp(J)f exp(- J). Equation (3) can be derived
from (2) by taking the Fourier transform in the y direction.

With the assumption that the linear integral equations (3) have no homogeneous solutions it follows
that p' and IL( are holomorphic functions of k, for kl &0 and kl &0, respectively. Hence the function
p(x, y, k) is a sectionally holomovPhic function of k having a jumP across kr=0. Thus Bp/8k=0 for all
k with k, &0 and &p/sk = p (x',y, k) —p (x,y, k) for k =ks. Manipulating Eqs. (3) we find the following
scattering equation:

g'(x, y, k) —g (x,y, k) =f „dt g (x,y, l)e "~"'"'f(t, k)e '"~" '"~, k =kz.

where I', are defined in terms of q via

T, (t, k) =(I/2v) f „d&f „dsje " ""v~,q(j, r)p'((, q, k)e'"~ " "; l, k real. (6)

I note the remarkable fact that f(l, k) can be solved in closed form in terms of T, , T . This is be-
cause the kernel of Eq. (5) is strictly upper triangular. For example if n =2 then f» =0, f» —-- T, , f»
=T, and f»(l, k) = —j dm T, (t,m)T (m, k).
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Equation (4) defines a Riemann-Hilbert problem for v, (i,y, k) in terms of / (l,'A). Its solution is given
by the following linear integral equation [which can be obtained by taking the minus" projection of (4)]:

(i. ,y, k) + d l /v
1 ji (i. ,y, l)e" 'f(l, v)e'

2ri v —K+ (0

By taking the large-/: limit of (7) and comparing with that of (2) we find

q(i-, y} = —(1/2i~)J ] .,7/ I „ /v p (x,y, l)e" "/(l, v)e

Hence, the solution of the inverse problem of (2) is given by (8), where p (i,y, k) is obtained from (7)
and the scattering data f(l, k) can be found in closed form in terms of T, (l, k) from (5).

(b} I now consider the inverse problem associated with the elliptic system which is obtained from
(2} by replacing Ae„by —i v, [J is a constant real diagonal matrix with all its entries different from
each other and &/(v, y) tends to zero for large x,y. ] A matrix eigenfunction V (x,y, k) which solves the
elliptic system, is bounded for all complex values of 4', and tends to I as ~'-~ is defined by the follow-
ing matrix equation:

(» (t,y, k));, =(I);, + (1/2&)(f „/$ J . d»i ( „dq —f/g I , (k)i f drj).

(9)

for J; & 0, where C;, =- (J; —J„)/J;, and for J; &0 the integrals with respect to i»i are replaced by

j~, .„d»I and j","~~A», respectively ((f);, denotes the ijth entry of the matrix f). Comparing (9) to
(3) it follows that (a) Eq. (9), in contrast to (3), has no jump across k, =0; (b) Eq. (9) depends explicitly
ou kz. Hence the solution p(r, y, k), although bounded for all complex values of k, is analytic nowhere
with respect to k, since &p/&0 ~0 [for simplicity of notation I still write je(i,y, k) instead of p, (i. ,y, k„,
k,) ].

The ' departure from holomorphicity' of Ae(x, i,k) is measured by d p/~1~. With the assumption that
(9) has no homogeneous solutions (as it was pointed out above this excludes the manifestation of lumps),
by differentiation of (9) it follows that & je/&k satisfies an equation obtained from (9) by replacing I by
Q(x,y, k, k, ), where (0);; =0,

(0);, =T;,(kR, /:, ) exP[jj;,(x,y, k~, k, ) ], jj;,(x,y, kee, k, ) =i C, ,(J,k~x+ k, y),

T, , (k„,k,):—(i/4n) sgn(J;)C;, I „.l& I „d~j(e/(/, q) ji(/;, g, k)),„e p[xjj,, ((-, q, k„,kz)], (10)

A 'F' problem can be defined as follows: Given &Ae/&k find v. In order to formulate such a problem
here, one needs to express dj /ejk in terms of p. This relationship is as follows:

ejAe(x, y, /) " J.
Qi Q x~y qkee +e ke T; (kgqke)ev (x~y qkg~ke)q

f, j=]. 'l

where e»'" is a matrix with zeros everywhere excePt at itsiPth entry which equals exPtj;, (x, i', kee, k,}.
Equation (11) can be derived bv first introducing an eigenfunction N (x, y, k„, A, ) which satisfies an
equation obtained from (9) by replacing / by ~e' ", and then by using the important symmetry condi-
tion N" (x,y, k~, k, ) =»(x,y, kR+/(J, /J, )k,}i "v. Using (11) and the equation

/(k) =(2~/) '
l I [d/ (z)/az](z —k) 'd'z, x:/z+ (2~/) ' 1 f(z)(z —k) 'dz

(which is an extension of Cauchy's formula over the region & bounded by the contour C "), one obtains
the following linear integral equation for W(x,y, k):

1 1 . 1
je(&~ yi k}

2 8 k
jeP(-'gg-n + ' zz)T|g(-'~p-'s)" (~ gy g-'zyze)dz &dz =/g

7T E .J;
(12)

where R . is the entire complex & plane and!I~ &, Iz = —2i!)~~d~l. Once p is found q can be reconstructed
via

1 . J
r((x, y) = —J Z, p .&. ,y, z„+i ze Tip(zRsze)~!' (i yy yz~yze)dz & l-' ~

27T
(13)
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Hence, the solution of the inverse problem cf the above elliptic system is given by (13), where pg, y, k)

is obtained from (12) and the scattering data T,, (k",k') are defined by (10).
(c) Suppose that an evolution equation for g(x,y, t) possesses a Laz pair" (i.e. , it can be written as

the compatibility condition of two linear equations). If the time-independent part of this Laz pair is
contained in (1), then the above results can be directly used to linearize the initial-value problem asso-
ciated with this equation. To achieve this one only needs to evaluate the evolution of the scattering
data (this is straightforward by appropriate use of the time-dependent part of the Laz pair).

The n-wave interaction equations

=~ag&~g„+~ag&sg + + (~~~ —~~g)&i'&'g. ~

~=1
k~j

(14)

are contained in (2), with ~ defined by ~;, =(C; —C,)/(~; -~,), ~;, =C; —'; &;;. Hence the initial-value
problem of (14) can be solved through (8), where f(l, k, 0) is found from (5), (6), and

f(l, k, t) =exp(iltA2O) f(l, k, 0) exp(- iktA»), A, o =diag(C„. . . ,C„).

We call DS I the set of equations

iQ, + p(Q. „+Q„)=-~IQI'Q+ VQ; V„„-V„=»(IQI')„„,a =+1.

These equations are also contained in (2) with J, =1, ~, =-1, q» =Q, and q» =vg. The evolution of
f(l, k, t) is given by

f(l,k, t) = exp(- l2tA~o)f(l, k, 0)exp(k2tA-), A» =diag(i, —i)

(15)

We call DS II the set of equations obtained from (15) by replacing Q„„by —Q„„and p„by —p„.
These equations are related to the elliptic case (b) above. Hence the initial-value problem of DS II can
be solved through (13) where the scattering data ~" =—&;,~" is computed via (10) and

0"(x,y, k~, k»t) = exp(k'A, g)Q*'(x,y, k. ,k„0)exp(- k'A»t),

5—:k~+ t(Z, /J;)k'.
This work is part of a larger program of study on IST in multidimensions undertaken by M. J. Ab-

lowitz and the author. Various other aspects of this work will be presented in Ref. 12. The author ap-
preciates useful discussions with D. Bar Yaacov. This work was partially supported by the U. S. Of-
fice of Naval Research through Grant No. N00014-76-C-0867 and by the National Science Foundation
through Grant No. MCS-8202117.
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