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Effect of Coulomb Interactions on the Peierls Instability
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The effect of electron-electron repulsion on the ground-state properties of one-dimen-
sional electron-phonon systems is considered in the half-filled —band case. Two different
electron-phonon models are studied, with use of a numerical simulation technique. For
large phonon frequency, an on-site electron repulsion suppresses the Peierls distortion
in both models, while for small phonon frequency, it enhances the dimerization in one
model. The effect of a nearest-neighbor repulsion is always to enhance the ground-state
dimeriz ation.

PACS numbers: 71,38.+i, 72.15.Nj, 75.10.1 p

A detailed understanding of the properties of
one-dimensional electron-phonon models is of
interest to elucidate the connection between the
models and various quasi-one-dimensional real
materials. Although much progress has been
achieved in our theoretical understanding in re-
cent years, ' many difficult questions remain open.
Tao important effects in many cases are likely
to be quantum fluctuations of the phonon field and
electron-electron interactions. In most theoreti-
cal treatments, one or both of these effects are
neglected or treated with uncontrolled approxima-
tions. The purpose of this Letter is to report es-
sentially exact results from numerical simula-
tions on models where both of these effects are
present.

I have studied two different models in the half-
filled-band case. The first is defined by

+X+ q, n, , (2)

and describes the coupling of an intramolecular
vibration mode to the local electron density. For
both models, I add a Coulomb interaction of the
form

H, =U Q, n, t n, t+Vgtn, n;+

U and V are presumably the dominant electron-
electron intera, ctions in quasi-one-dimensional

+p [t -Z(q,.„-q,.)](c, .tc... ,+H.c.) (1)
5 ~ 0

and was proposed by Su, Schrieffer, and Heeger'
(SSH) to describe polyacetylene [(CH)„]. Here,
longitudinal phonon displacements couple to the
electron hopping term. The second model is de-
fined by'

2

H=5~ ' +—Kq, —tQ (c;,tc,.„,+H.c.)

materials.
I use a Monte Carlo technique introduced re-

cently and study finite rings of X=24 sites.
From simulations on smaller systems (N=16)
we concluded that finite-size effects are small
for the cases studied. The only source of error
in the procedure is the finite time slice 67.,
which was taken to be 1/4t for U ~ 2 and 1/Bt for
U=4 a,nd 8. I expect the error to be at most a
few percent.

Within mean-field theory, the models Eqs. (1)
and (2) have a Peierls-dimerized ground state for
arbitrary electron-phonon coupling ~ in the ab-
sence of Coulomb interactions. We have recently
reported detailed results on the effect of quantum
fluctuations on the ground-state properties of
these systems. ' The effect of U on the ground-
state properties of one-dimensional electron-pho-
non systems has been a subject of controversy.
Hartree-Fock theory for the model Ecl. (1)"pre-
dicts that there is a competition that results in a
Peierls-dimerized charge-density-wave (CDW)
ground state for small U and a spin-density-wave
(SDW) ground state for large U, with a discontin-
uous transition' at a critical value U, . On the oth-
er hand, perturbation-theory" as well as finite-
chain calculations'" predict that the dimeriza-
tion is favored by a small on-site repulsion U.
Renormalization-group (RG) results' predict a
SDW instability and no COW instability in the half-
filled electron gas with U&0.

Figure 1 shows results for the dimerization or-
der pa, rameter for the SSH model and parameters
used in the literature to describe polyacetylene, '
which are, in the present units, I= 1, K=0.25,
X =0.29, to =2(K/M)' '=0.066. These simulations
mere done at a temperature T =0.013 which should
ensure that fluctuations are quantum rather than
thermal. Also shown are Hartree-Fock results. ' '
As reported earlier, quantum fluctuations reduce
the dimerization from the mean-field result, the
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FIG. 1. Phonon order parameter (full circles) pp~&

and electronic gap (open circles) g vs U' for the SSH
model, with ~ =0.066, A = 0.29, E = 0.25, I; = 1. 'The
lines are drawn to guide the eye. The dashed line is
Hartree-8'ock results (Hefs. 6 and 7). The full and open
triangles are 4Arpg& and g for the case U =4, V =2.

effect being small for this phonon frequency. A
finite U first increases the dimerization beyond
its mean-field value. This has been recently em-
phasized by Mazumdar and Dixit. " As V increas-
es further, the dimerization starts to decrease.
For large U, the model becomes equivalent to an
antiferromagnetic Heisenberg model with ex-
change coupling,

and the lattice distortion is due to a spin-I'eierls
mechanism. " For the case &i =0, we would there-
fore expect the dimerization to decrease but re-
main finite for any U &~. As a check on the pres-
ent results for the case U= 8 I have done simula-
tions for that case." The results for the dimeri-
zation agree with those obtained by direct simula-
tion of the SSH model within statistical error.

The inclusion of a nearest-neighbor repulsion
V enhances the dimerization further, as seen in
Fig. 1. In the large-U limit, one can argue that
the effective exchange is J=2t'/(U —T') so that
the effect of V can be represented by an effective
on-site repulsion U, «=U —V. However, for the
case studied (Fig. 1) the effect on the dimeriza-
tion is larger than this argument would predict.
In weak coupling, RG analysis' predicts that the

I? D

6 I

FIG. 2. Staggered spin-spin (z-component) correla-
tion function for the case of Fig. 1. The dashed line is
results for a dimerized Heisenberg chain, with ex-
change couplings given by Eq. (4) for U'=8.

system goes into the CDW region as the "back-
ward scattering" g, = U —2V changes sign, which
indicates that a nonzero V favors dimerization.
ne could expect that the effect of 7' is represent-
ed by U, f f U —2V, but the results show that this
is not the case either. One has to describe the
model by two independent parameters U and V.

I also show in Fig. 1 the optical gap in the elec-
tronic spectrum, obtained from the imaginary-
time dependence of the current-current correla-
tion function. " In the absence of Coulomb inter-
actions, this agrees with the value for the phonon
order parameter (appropriately scaled), as pre-
dicted by mean-field theory. For nonzero inter-
actions, the difference between it and the phonon
order parameter can be defined as the "Coulomb
gap. " Note how it rises rapidly with U, and de-
creases when V is turned on. The effect of V on
the electronic gap seems to be well described by
a U, f)=U- T.

Figure 2 shows the spatial decay of the stag-
gered spin-spin correlation function for the case
discussed above. Note the slower decay when the
Coulomb interaction is turned on. However, the
system is clearly not in a SDW state as predicted
by Hartree-Fock theory, but correlations appear
to decay exponentially. For comparison, I also
show the spin-spin correlations obtained from
Monte Carlo simulations on a dimerized Heisen-
berg chain, "with couplings J, and 7, given by
Eq. (4) for the case U=8. The results for the
SSH model are close to these. The effect of a
nearest-neighbor V is to suppress the spin-spin
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FIG. 4. Phonon oo er parameter ~p vs U for the
molecular-crystaL model ~ =0 1co= . , A, =0.636, % =0.25
g = 1. 'The open circle is for the case U =4, &=2.

e ashed line indicates the mean-field ult fres ts for
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FIG. 3. St eredagg phonon spatial correlation function
for the SSH model; ~=1, A. =0.35 K=0 2

me is the mean-field results for p V=O.

correlations, as one would expect.
In Fig. 3 I show results for the phono tnon s ag-

g e spatial correlation function in the SSH
el for a phonon frequency & = 1. Note the large

e mod-

e ig p onon fre-on-site fluctuations due to the hi h ho

merization. This can be understood in the light

els with s i,
of our recent study' where we showed that mod-
l 'th p'nless electrons are very sensitive to

quantum fluctuations. The effect of a large U is
identical to theo he Pauli exclusion principle for
less articles

or spln-
pa ic es, and quantum fluctuations tend to

destroy the dimerization. F RG
e w = ~ limit, " I expect a transition to an un-

dimerized state at U =4x'/K. Th e results for
m is predic-t = 1 appear to be not too far from th

ion. In the presence of a nonzero V the d
izatio

e imer-
i n is again strongly enhanced.

I now discuss results for the molecular-cr s-
e, q. ~', . Here, the behavior was qual-

itatively similar for small d 1an arge phonon fre-

or
quency. Figure 4 shows results for th hr e p onon
rder parameter for (d = (E/M)"'=0 1

nonzero Unzero U strongly suppresses the Peierls dis-
tortion. This is to be expected, since there is
no spin-Peierls mechanism in this mod 1 b

e on-site repul-phonons are on-site and th
sion is in direct competition with the electron-

s c early seen inphonon coupling. This is mo t l
e

arge-delimit,

where the electro - hn-p onon
p ing is equivalent to an on-site att- i e a raction

y /K. The presence of a nonzero V fa-

vors doub1oub1 ' an is will clear-ouble occupancy of sites d th'

y e ance the dimerization in this model. In the
&=~ limit I e ei, expect from theoretical arguments

(2y'/Z "that any nonzero V will give dimerizat'o f Uin or

in ermolecularIn conclusion, for the case of t
vibrations (SSH model) and small cu I have dem-

ra ize eierlsons rated the existence of a "gener 1 d P '

eris 'U=O
transition" encompassing both the oe ordinary Pei-
er s (U=O) and the spin-Peierls (antiferromag-

i s. owever, thesenetic Heisenberg model) limits. Ho
concepts derive from perturbation theory, and in
considering the fully coupled system there is no
real basis for a sharp distinction between both
regimes. For the case of intramolecular 'b

tions the
cu ar vi ra-

the Pe
ere is no spin-Peierls mech anism and

e eierls distortion is suppressed b
oulomb repulsion. I believe that the o

p ase will disappear in this case fo 1or arge U even
or z) = . More detailed studies of this and other

questions are in progress.
As wewe have seen, systems that exhibit a Pei-

erls transition arare not necessarily characterized

ion i
by weak Coulomb interactions. In thn e case of

p onon requency,ongitudinal phonons and low pho f
quite the opposite can be true I hrue. ave demon-
strated the inadequacy of the Hartree-Fock ap-
proximation, which predicts for the c
acetylene that o

s or e case of poly-
y ene at only U/t & 1.8 is consistent with a

dimerized ground state." Th thus, e present re-
sults open up the possibility that (CH)„could be
characterized by appreciable Coulomb intera, c-
ions, particularly if the nearest-neighbor re 1-

sion is lai ge. The influence of these on the prop-
erties of solitons should be reexamined.

The represent results also suggest that in real
materials Peis, eierls transitions are predominantl
going to occur b coy upling to intermolecular rath-

minan y

er than intramolecular mod I tes. n ramolecular
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Peierls transitions are suppressed both by the ef-
fect of the on-site repulsion U and by the finite
phonon frequency' which is likely to be much high-
er in these modes.

Part of the numerical results reported here
were obtained on a CDC 7600 computer of Los
Alamos National Laboratory, paid by funds from
the Institute for Theoretical Physics, University
of California, Santa Ba,rbara. I am grateful to
D. Campbell for his support. Helpful discussions
with M. Grabowski are gratefully acknowledged.
This work was supported by the National Science
Foundation through Grant No. DMH-82-17881.
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