Quark Distributions in Nuclei

C. E. Carlson^(a)

Physics Department, State University of New York at Stony Brook, Stony Brook, New York 11794

and

T. J. Havens

Physics Department, College of William and Mary, Williamsburg, Virginia 23185 (Received 11 March 1983)

Recent deep-inelastic lepton-scattering data from iron and deuterium targets are interpreted from a quark-model viewpoint as evidence for a significant number of sixquark clusters in iron. Standard expectations for the distribution of quarks within a sixquark cluster give some quantitative success in describing the data.

PACS numbers: 21.65.+f, 12.35.Eq, 13.60.Hb, 25.30.-c

Recently, Pirner and Vary¹ and Jaffe² have considered the effects of quark degrees of freedom upon inelastic electron or muon scattering from nuclei. The data are quite suggestive. Electron scattering upon ³He occurs in kinematic regions not allowed if the scattering is off a single stationary nucleon.³ Standard wave functions for ³He give insufficient Fermi motion to account for what is seen, but Pirner and Vary¹ show that clustering of nucleons into six- and nine-quark clusters, with standard estimates⁴ for the momentum distributions of the quarks within these clusters, gives a convincing account of the data. More recently, inelastic muon⁵ and electron⁶ scattering upon ⁵⁶Fe, in a kinematic region easily accessible to individual nucleons as well as the entire nucleus, give data indicating that ⁵⁶Fe is significantly different from a collection of 56 free nonoverlapping nucleons.

It is the purpose of this note to show that the 56 Fe data, both at low x and high x,⁷ follow trends that can be expected within a standard quark-gluon picture of nucleons. Quantitatively, the data suggest that nucleons in 56 Fe are often, about 30% of the time, subsumed into six-quark or larger clusters.

The F_2 structure function for ⁵⁶Fe divided by the corresponding quantity for deuterium is shown in Fig. 1, together with a curve to be explained shortly. The deuteron is weakly bound, so that the neutron and proton in it are almost free, and the small chance that they overlap will be neglected here. (Some corrections have been made to the ⁵⁶Fe data to account for ⁵⁶Fe having different numbers of neutrons and protons.) The ratio is not constant. Quark clustering can explain the rise both at small x and at large x. Qualitatively, the rise at small x occurs because a cluster of two nucleons allows quarks to spread over a larger region of space, leading one to expect by the uncertainty principle lower quark momenta, or more quarks at low x. In addition, there is some probability in a two-nucleon or sixquark cluster that one single quark can obtain more momentum than a single nucleon¹ without Fermi motion. Hence there must be a rise in the plotted ratio as x approaches 1. (Fermi-motion effects could also explain this rise.⁸) A quantitative analysis follows.

In determining F_2 , we will use simple quark distributions dictated by a few principles given below, supplemented by experimental data when available.

(1) At high x, quark distributions will be close to what is expected from the counting rules,⁴

$$f(x) \sim (1-x)^{2n_s - 1 + 2 \mid \Delta s_z \mid}, \qquad (1)$$

FIG. 1. Data from Ref. 5 (crosses), where Q^2 is from 20 to 60 GeV², and Ref. 6 (circles), where Q^2 is from 4 to 19 GeV², for $F_2^{Fe}(x)/F_2^{d}(x)$. Also shown is our result when 30% of the nucleons in ⁵⁶Fe are subsumed into six-quark clusters.

where n_s is the minimum number of spectators and Δs_z is a spin factor, s_z (target) – s_z (quark). At low x, the behavior will be what is expected from Regge arguments,⁹ namely, $x^{-1/2}$ for valence quarks and x^{-1} for ocean quarks.

(2) The fraction of momentum carried by gluons at very high Q^2 is given by^{10,11}

$$\langle x_{F} \rangle = N_{F} / (N_{F} + \frac{3}{2} N_{f}), \qquad (2)$$

where $N_g = 8$ is the number of colored gluons and N_f is the number of flavors of quarks. The above result is 63% for three flavors, 57% for four flavors, and $(55 \pm 2)\%$ experimentally.¹² We will take $\langle x_g \rangle = 57\%$.

(3) The distribution functions for quarks are slowly varying functions of Q^2 . The variation with Q^2 can be calculated from the Altarelli-Parisi equations or other means,¹¹ but only if the distribution functions at some fixed Q^2 are known. We do not have detailed information at varying Q^2 to examine what happens in the ⁵⁶Fe case, and so we will stick to the expected simple distributions, neglecting the slow Q^2 dependence for both ⁵⁶Fe and the deuteron.

For valence quarks in the proton, we have

$$U_{v}(x) = x u_{v}(x) = 2N_{u}\sqrt{x} (1-x)^{3}, \qquad (3)$$

where $N_u = B^{-1}(\frac{1}{2}, 4) \cong 1.094$, and an observation¹³ that d(x) falls one power of 1 - x faster gives

$$D_{v}(x) = x d_{v}(x) = N_{d} \sqrt{x} (1-x)^{4}, \qquad (4)$$

with $N_d = B^{-1}(\frac{1}{2}, 5) = \frac{9}{8}N_u$. The ratio agrees well with the experimentally determined¹³ $d_v(x)/u_v(x) = 0.57(1-x)$.

For the ocean quarks, observations suggest that all the distributions have the same shape, and that 14

$$\mathbf{s}(\mathbf{x}) \cong \frac{1}{2} \,\overline{u}(\mathbf{x}) = \frac{1}{2} \,\overline{d}(\mathbf{x}) \,. \tag{5}$$

We then take

$$\overline{U}(x) = x \overline{u}(x) = \overline{N}(1-x)^{7}.$$
(6)

Momentum normalization requires

$$\langle x_0 \rangle = 1 - \langle x_v \rangle - \langle x_g \rangle$$
$$= 1 - \left(\frac{2}{9} + \frac{1}{11}\right) - \frac{4}{7} = 0.115, \qquad (7)$$

where $\langle x_0 \rangle$ is the momentum fraction carried by all the ocean quarks. This gives $\overline{N} = 0.1857$.

These distributions reproduce credibly the experimental¹⁵ F_2^{d} at $Q^2 = 50 \text{ GeV}^2/c^2$, as may be seen in Fig. 2.

The quark distributions for the six-quark cluster are most naturally expressed in terms of z,

FIG. 2. Our $F_2^d(x)$ and data of Ref. 15. The data are at $Q^2 = 50 \text{ GeV}^2$ except the first three points which are at $Q^2 = 15 \text{ GeV}^2$ (first point) and 30 GeV² (next two).

the fraction of the full momentum of a six-quark cluster (i.e., two nucleons) carried by a given quark. There are no detailed experimental data guiding us in determining the separate quark distributions. Using Eq. (1) for the valence quarks we have

$$V_6(z) = z v_6(z) = N_6 \sqrt{z} (1-z)^{10}, \qquad (8)$$

where $N_6 = B^{-1}(\frac{1}{2}, 11) \cong 1.850$. In terms of x, the momentum fraction of a single nucleon, x = 2z and $0 \le x \le 2$. For the ocean quarks, we take the same relation between s, \overline{u} , \overline{d} , etc., quarks as for the proton. Equation (1) gives

$$\overline{U}_{6}(z) = z \,\overline{u}_{6}(z) = \overline{N}_{6}(1-z)^{14}.$$
(9)

Momentum normalization requires

$$\langle z_0 \rangle = 1 - \langle z_v \rangle - \langle z_\varepsilon \rangle = 0.168 \tag{10}$$

or $\overline{N}_6 = 0.5042$. With these distributions, the valence quarks in the six-quark cluster take up a lower fraction of the total momentum than in the proton, and the fraction carried by ocean quarks is correspondingly enhanced. This plays an important role in the rise of $F_2^{\ Fe}/F_2^{\ d}$ at low x. (We have taken the momentum fraction carried by gluons in ⁵⁶Fe to be the same as in the nucleus. If it should be less,² the momentum carried by ocean quarks and their effects upon $F_2^{\ Fe}$ would be correspondingly greater.)

The ratio of F_2 for a six-quark cluster to that for a deuteron is

$$R_{6}(x) = \frac{F_{2}^{6}(x)}{F_{2}^{d}(x)} = \frac{\frac{5}{6}V_{6}(\frac{1}{2}x) + \frac{11}{18}\overline{U}_{6}(\frac{1}{2}x)}{\frac{5}{18}[U(x) + D(x)] + \frac{11}{9}\overline{U}(x)}.$$
 (11)

We take a simple model where a fraction f of the nucleons in ⁵⁶Fe have become part of a sixquark cluster, with a fraction 1 - f remaining single nucleons. The ratio

$$F_{2}^{Fe}(x)/F_{2}^{d}(x) = (1-f) + fR_{6}(x)$$
(12)

is plotted in Fig. 1. We choose f = 30%. We should emphasize that these results follow from standard ways of estimating quark distributions together with a chosen value for f.

One may ask if 30% is a reasonable six-quark fraction. We may answer affirmatively. The radius of iron is given approximately by (1.12 fm) $\times A^{1/3} = 4.3$ fm; then the volume of 56 nucleons of radius 0.75 fm is 30% of the volume of ⁵⁶Fe. Said differently, a given nucleon within ⁵⁶Fe has roughly a 30% chance of overlapping with another nucleon. One may also ask how consistent we are with the high-x ³He calculations. If $R_N = 0.75$ fm, then Pirner and Vary¹ calculate (geometrically) 38% six-quark state. They used $\sqrt{z}(1-z)^9$ for the valence quark distribution and also a smaller R_N which led to a smaller six-quark fraction¹⁶; using $\sqrt{z} (1-z)^{10}$ instead will account for the ³He data with a larger six-quark fraction. Taking the ⁵⁶Fe and ³He results together, and taking both quite seriously, gives evidence that the counting with the $2|\Delta s_z|$ in the exponent is right and that the nucleon core radius (bag radius) is around 0.75 fm.

The results obtained here from a guark model follow the trend of the data. One question to be raised is how to mix a quark description with a nuclear-physics nucleon-meson description of the nucleus. A rise of F_2^{Fe}/F_2^d at high x is expected from Fermi motion of nucleons,⁸ but this is connected with the nuclear wave function for overlapping nucleons which is here modeled as a six-quark cluster; the two effects should not be added together. Similarly, it may be possible to describe the low-x behavior in terms of mesonexchange currents and pair currents, but again these descriptions are not easily separated from a description of low-x quarks in a nucleus obtained here from the six-quark cluster.

In conclusion, the combination of the quark model and nuclear physics should be valuable to both those who wish more information about the confinement mechanisms of quarks and those who wish to understand nuclear dynamics when the nucleons appear closely spaced. We have not yet

explained the F_2^{Fe}/F_2^d data perfectly, but we have a first, simple, quantitative quark picture of the physics and results which suggest that the picture is quite relevant. It would be very useful to have many precise measurements of nuclear structure functions at varying x, Q^2 , and nucleon number.

This work was supported in part by the National Science Foundation through Grant No. NSF PHY-79-08240, and in part by the U.S. Department of Energy under Contract No. DE-AC02-76ER13001.

Noted added.—After submission of this paper, we received a new report from Pirner and Vary, entitled "Sea Quark Distributions in Nuclei," which is similar to the present work.

(a) On leave from the College of William and Mary, Williamsburg, Va. 23185.

¹H. Pirner and J. P. Vary, Phys. Rev. Lett. 46, 1376 (1981).

²R. Jaffe, Phys. Rev. Lett. <u>50</u>, 228 (1983).

³D. Day et al., Phys. Rev. Lett. 43, 1143 (1979). ⁴D. Sivers, Annu. Rev. Nucl. Part. Sci. 32, 149 (1982); R. Blankenbecler and S. Brodsky, Phys. Rev. D 10, 2973 (1974); G. Farrar and D. Jackson, Phys. Rev. Lett. 35, 1416 (1975); A. Vainstein and V. Zakharov, Phys. Lett. 72B, 368 (1978).

⁵J. J. Aubert et al. (European Muon Collaboration). Phys. Lett. 123B, 275 (1983).

⁶A. Bodek et al., Phys. Rev. Lett. <u>50</u>, 1431 (1983). ⁷Notation: $x = Q^2/2m_N \nu$, where q is the four-momentum of the virtual photon, $Q^2 \equiv -q^2 \ge 0$, $\nu = q_0$ in the laboratory system, and m_N is the nucleon mass; x is also the fraction of a nucleon's momentum carried by a quark, in the infinite-momentum frame.

⁸A. Bodek and J. L. Ritchie, Phys. Rev. D <u>23</u>, 1070 (1981), and Phys. Rev. D 24, 1400 (1981).

⁹J. Kuti and V. Weisskopf, Phys. Rev. D <u>4</u>, 3418 (1971).

¹⁰S. Brodsky and J. Gunion, Phys. Rev. D 19, 1005 (1979).

¹¹G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

¹²J. DeGroot et al., Z. Phys. C 1, 149 (1979).

¹³F. Eisele, J. Phys. (Paris), Colloq. <u>43</u>, C3-337 (1982).

¹⁴Ref. 13 and H. Abramowicz et al., Z. Phys. C <u>15</u>, 19 (1982).

¹⁵J. J. Aubert *et al.* (European Muon Collabration). Phys. Lett. <u>123B</u>, 123 (1983). ¹⁶Using $\sqrt{z}(1-z)^9$ changes our low-x results very little.